- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
MoS2/silicon-on-insulator Heterojunction Field-Effect-Transistor for High-performance Photodetection
摘要: In this letter, we demonstrate a novel junction field effect transistor (JFET) by transferring MoS2 onto silicon-on-insulator (SOI) substrate to control the thin Si channel. By combining high light absorption coefficient in MoS2 with high internal gain in thin Si channel, the device can be used for photodetection and achieve high responsivity up to ~1.78×104 A/W, high detectivity over 3×1013 Jones, and short response time down to 1.44 ms. Furthermore, unlike conventional SOI photodetector which is only sensitive to UV light, the response spectrum of our proposed device peaks in visible/near-infrared region, which is interesting for imaging and optical communication applications.
关键词: SOI,High photoresponsivity,Van der Waals heterojunction,MoS2,Junction field effect transistor
更新于2025-09-23 15:22:29
-
[IEEE 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) - Brasov, Romania (2019.11.3-2019.11.6)] 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) - Stable Operation of an Automotive Photovoltaic System under Moving Shadows
摘要: This paper presents a simple mathematical expression to model the effect of statistical dopant fluctuations on threshold voltage (Vth) of junction field-effect transistors (JFETs). The random discrete doping (RDD) in the active device area is used to derive an analytical model to compute the standard deviation, σ Vth,RDD of the Vth-distribution for any arbitrary channel doping profiles. The model shows that the Vth-variability in JFETs depends on the active device area, channel doping concentration, and the depth of the channel depletion region of the gate/channel pn-junction. The model is applied to compute σ Vth,RDD for symmetric and asymmetric source/drain double-gate n-channel JFETs. The simulation results show that the model can be used for predicting Vth-variability in JFETs.
关键词: statistical dopant fluctuations,random discrete doping,process variability in JFETs,modeling threshold voltage variability,JFET threshold voltage variability,Junction field-effect transistor (JFET)
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Electron-Conductive, Hole-Blocking Contact for Silicon Solar Cells
摘要: This paper presents a simple mathematical expression to model the effect of statistical dopant fluctuations on threshold voltage (Vth) of junction field-effect transistors (JFETs). The random discrete doping (RDD) in the active device area is used to derive an analytical model to compute the standard deviation, σ Vth,RDD of the Vth-distribution for any arbitrary channel doping profiles. The model shows that the Vth-variability in JFETs depends on the active device area, channel doping concentration, and the depth of the channel depletion region of the gate/channel pn-junction. The model is applied to compute σ Vth,RDD for symmetric and asymmetric source/drain double-gate n-channel JFETs. The simulation results show that the model can be used for predicting Vth-variability in JFETs.
关键词: modeling threshold voltage variability,random discrete doping,process variability in JFETs,statistical dopant fluctuations,JFET threshold voltage variability,Junction field-effect transistor (JFET)
更新于2025-09-19 17:13:59
-
Scanning probe microscopy and potentiometry using a junction field effect transistor based sensor
摘要: Scanning tunneling microscopy in its conventional form relies on a steady state tunneling current of 10?12–10?6 A. However, for various applications, it is desirable to reduce the current load to a minimum. Here, we present first experiments using a cooled junction field effect transistor in open gate operation, thereby reducing the DC-current to less than 10?19 A. This enables almost ideal measurements of the local electrochemical potential on a surface. Various methods applying dynamic modes can be used to maintain a constant distance between the scanning probe and the sample surface. Here, we use an AC-bias applied to the sample and a lock-in amplifier connected to the preamplifier to evaluate the conductance of the tunneling gap.
关键词: potentiometry,scanning probe microscopy,junction field effect transistor,sensor
更新于2025-09-09 09:28:46