- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Determination of Maximum Power Point with a Module to Module Monitoring System, M3S
摘要: We developed and successfully applied data-driven models that heavily rely on readily available remote sensing datasets to investigate probabilities of algal bloom occurrences in Kuwait Bay. An artificial neural network (ANN) model, a multivariate regression (MR) model, and a spatiotemporal hybrid model were constructed, optimized, and validated. Temporal and spatial submodels were coupled in a hybrid modeling framework to improve on the predictive powers of conventional ANN and MR generic models. Sixteen variables (sea surface temperature [SST], chlorophyll a OC3M, chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel-Maritorena (GSM), precipitation, CDOM, turbidity index, PAR, euphotic depth, Secchi depth, wind direction, wind speed, bathymetry, distance to nearest river outlet, distance to shore, and distance to aquaculture) were used as inputs for the spatial submodel; all of these, with the exception of bathymetry, distance to nearest river outlet, distance to shore, and distance to aquaculture were used for the temporal submodel as well. Findings include: 1) the ANN model performance exceeded that of the MR model and 2) the hybrid models improved the model performance significantly; 3) the temporal variables most indicative of the timing of bloom propagation are sea surface temperature, Secchi disk depth, wind direction, chlorophyll a (OC3M), and wind speed; and 4) the spatial variables most indicative of algal bloom distribution are the ocean chlorophyll from OC3M, GSM, and the GIOP products; distance to shore; and SST. The adopted methodologies are reliable, cost-effective and could be used to forecast algal bloom occurrences in data-scarce regions.
关键词: remote sensing,Coupled spatiotemporal algal bloom model,data mining,Kuwait bay,neural networks
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Measurement Uncertainty as a Test Model Assessment Tool
摘要: We developed and successfully applied data-driven models that heavily rely on readily available remote sensing datasets to investigate probabilities of algal bloom occurrences in Kuwait Bay. An artificial neural network (ANN) model, a multivariate regression (MR) model, and a spatiotemporal hybrid model were constructed, optimized, and validated. Temporal and spatial submodels were coupled in a hybrid modeling framework to improve on the predictive powers of conventional ANN and MR generic models. Sixteen variables (sea surface temperature [SST], chlorophyll a OC3M, chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel-Maritorena (GSM), precipitation, CDOM, turbidity index, PAR, euphotic depth, Secchi depth, wind direction, wind speed, bathymetry, distance to nearest river outlet, distance to shore, and distance to aquaculture) were used as inputs for the spatial submodel; all of these, with the exception of bathymetry, distance to nearest river outlet, distance to shore, and distance to aquaculture were used for the temporal submodel as well. Findings include: 1) the ANN model performance exceeded that of the MR model and 2) the hybrid models improved the model performance significantly; 3) the temporal variables most indicative of the timing of bloom propagation are sea surface temperature, Secchi disk depth, wind direction, chlorophyll a (OC3M), and wind speed; and 4) the spatial variables most indicative of algal bloom distribution are the ocean chlorophyll from OC3M, GSM, and the GIOP products; distance to shore; and SST. The adopted methodologies are reliable, cost-effective and could be used to forecast algal bloom occurrences in data-scarce regions.
关键词: remote sensing,Coupled spatiotemporal algal bloom model,data mining,Kuwait bay,neural networks
更新于2025-09-23 15:21:01
-
Effects of Photovoltaic Module Materials and Design on Module Deformation Under Load
摘要: We developed and successfully applied data-driven models that heavily rely on readily available remote sensing datasets to investigate probabilities of algal bloom occurrences in Kuwait Bay. An artificial neural network (ANN) model, a multivariate regression (MR) model, and a spatiotemporal hybrid model were constructed, optimized, and validated. Temporal and spatial submodels were coupled in a hybrid modeling framework to improve on the predictive powers of conventional ANN and MR generic models. Sixteen variables (sea surface temperature [SST], chlorophyll a OC3M, chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel-Maritorena (GSM), precipitation, CDOM, turbidity index, PAR, euphotic depth, Secchi depth, wind direction, wind speed, bathymetry, distance to nearest river outlet, distance to shore, and distance to aquaculture) were used as inputs for the spatial submodel; all of these, with the exception of bathymetry, distance to nearest river outlet, distance to shore, and distance to aquaculture were used for the temporal submodel as well. Findings include: 1) the ANN model performance exceeded that of the MR model and 2) the hybrid models improved the model performance significantly; 3) the temporal variables most indicative of the timing of bloom propagation are sea surface temperature, Secchi disk depth, wind direction, chlorophyll a (OC3M), and wind speed; and 4) the spatial variables most indicative of algal bloom distribution are the ocean chlorophyll from OC3M, GSM, and the GIOP products; distance to shore; and SST. The adopted methodologies are reliable, cost-effective and could be used to forecast algal bloom occurrences in data-scarce regions.
关键词: remote sensing,data mining,neural networks,Coupled spatiotemporal algal bloom model,Kuwait bay
更新于2025-09-19 17:13:59