修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Opportunities for High Efficiency Monochromatic Photovoltaic Power Conversion at 1310 nm

    摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.

    关键词: parallel computing,GPU,LDPC decoders,reconfigurable computing,high-level synthesis,CPU,LDPC codes

    更新于2025-09-23 15:21:01

  • [IEEE 2019 3rd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech) - Kolkata, India (2019.8.29-2019.8.31)] 2019 3rd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech) - Effect of I Shaped Periodic Structures over Collinear Arms of 150 Degree Bend Substrate Integrated Waveguide

    摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.

    关键词: parallel computing,GPU,LDPC decoders,reconfigurable computing,high-level synthesis,CPU,LDPC codes

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Beijing, China (2019.11.21-2019.11.23)] 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Accurate Short-term Forecasting for Photovoltaic Power Method Using RBM Combined LSTM-RNN Structure with Weather Factors Quantification

    摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.

    关键词: LDPC codes,high-level synthesis,CPU,parallel computing,LDPC decoders,reconfigurable computing,GPU

    更新于2025-09-23 15:19:57

  • [IEEE 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Xiamen, China (2019.12.17-2019.12.20)] 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Microwave Approach to Study Resonant Features of All-dielectric Metasurfaces

    摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.

    关键词: parallel computing,GPU,LDPC decoders,reconfigurable computing,high-level synthesis,CPU,LDPC codes

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Theoretical study of the MAPbI <sub/>3</sub> /SnO <sub/>2</sub> interface band offset in perovskite solar cells considering mobile ions

    摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.

    关键词: LDPC codes,high-level synthesis,CPU,parallel computing,LDPC decoders,reconfigurable computing,GPU

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Flexible silicon heterojunction solar cells on 40 ?μm thin substrates

    摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.

    关键词: LDPC codes,high-level synthesis,CPU,parallel computing,LDPC decoders,reconfigurable computing,GPU

    更新于2025-09-19 17:13:59