- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Temperature analysis for the laser-assisted tape winding process of multi-layered composite pipes
摘要: Tubular structures of fiber-reinforced polymer composites are utilized in various applications such as risers in the oil and gas industry and hydrogen pressure vessels in the automotive sector. The laser-assisted tape winding process presents an automated and efficient solution for the manufacturing of these structures out of thermoplastic composites. However, in order to guarantee reliable and high-quality process results, the temperature distribution within the laminate governing the consolidation between successively wound layers has to be understood and taken into account for process design. In an experimental setup, thermocouples were embedded between the layers in multiple spots along the perimeter during the manufacturing of pipe samples with five layers wound on a pure thermoplastic liner. This enabled capturing the through-thickness temperature distribution at different transversal locations. In addition to the temperature data recorded by the thermocouples, a stationary infrared thermographic camera focused on the laser-heated area was mounted on the tape winding head. The temperature data points of both sources were contrasted to evaluate how the through-thickness temperature distribution reflects the temperature input on the surface. Furthermore, the experimentally determined temperature distribution was compared with the results of a numerical process model, drawing conclusions with regard to the modelling and control of the multi-variable process.
关键词: Composites,Temperature measurement,Fiber reinforced plastic,Processing,Laser-assisted tape winding
更新于2025-09-16 10:30:52
-
Temperature variation during continuous laser-assisted adjacent hoop winding of type-IV pressure vessels: An experimental analysis
摘要: Laser-assisted tape winding is an automated process to produce tubular or tube-like continuous fiber-reinforced polymer composites by winding a tape around a mandrel or liner. Placing additional layers on a previously heated substrate and variation in material and process parameters causes a variation in the bonding temperature of fiber-reinforced thermoplastic tapes which need to be understood and described well in order to have a reliable manufacturing process. In order to quantify the variation in this critical bonding temperature, a comprehensive temperature analysis of an adjacent hoop winding process of type-IV pressure vessels is performed. A total of five tanks are manufactured in which three glass/HDPE tapes are placed on an HDPE liner. The tape and substrate temperatures, roller force and tape feeding velocity are measured. The coefficient of variation for each round is characterized for the first time. According to the statistical analysis, the coefficient of variation in substrate temperature is found to be approximately 4.8–8.8% which is larger than the coefficient of variation of the tape temperature which is 2.1–7.8%. The coefficient of variations of the substrate temperatures in the third round decrease as compared with the coefficient of variations in the second round mainly due to the change in gap/overlap behavior of the deposited tapes. Fourier and thermographic analysis evince that the geometrical disturbances such as unroundness and eccentricity have a direct effect on the temperature variation. In addition to the temperature feedback control, a real-time object detection technique with deep learning algorithms can be used to mitigate the unwanted temperature variation and to have a more reliable thermal history.
关键词: experimental analysis,Laser-assisted tape winding,thermoplastic composites,coefficient of variation
更新于2025-09-12 10:27:22