- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A FRET sensor for live-cell imaging of MAP kinase activity in Arabidopsis
摘要: The catalytic activity of mitogen activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain, and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the F?rster resonance energy transfer (FRET) efficiency of the sensor. FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live-cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22, and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial FRET changes. We also expressed the sensor in a conditional loss-of function double-mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the sensor’s NaCl-induced FRET gain, while other MAPKs are likely contributing to the chitin and flg22-induced FRET increases. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells.
关键词: Arabidopsis thaliana,FRET sensor,live-cell imaging,MAP kinase
更新于2025-09-09 09:28:46