- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum
摘要: Directly accessing the middle infrared, the molecular functional group spectral region, via supercontinuum generation processes based on turn-key fiber lasers offers the undeniable advantage of simplicity and robustness. Recently, the assessment of the coherence of the mid-IR dispersive wave in silicon nitride (Si3N4) waveguides, pumped at telecom wavelength, established an important first step towards mid-IR frequency comb generation based on such compact systems. Yet, the spectral reach and efficiency still fall short for practical implementation. Here, we experimentally demonstrate that large cross-section Si3N4 waveguides pumped with 2 μm fs-fiber laser can reach the important spectroscopic spectral region in the 3–4 μm range, with up to 35% power conversion and milliwatt-level output powers. As a proof of principle, we use this source for detection of C2H2 by absorption spectroscopy. Such result makes these sources suitable candidate for compact, chip-integrated spectroscopic and sensing applications.
关键词: mid infrared,photonic chip,gas spectroscopy,supercontinuum generation,fiber laser
更新于2025-11-28 14:23:57
-
Polycrystal Synthesis, Crystal Growth, Structure, and Optical Properties of AgGaGe <sub/><i> <i>n</i> </i> </sub> S <sub/> 2( <i> <i>n</i> </i> +1) </sub> ( <i>n</i> = 2, 3, 4, and 5) Single Crystals for Mid-IR Laser Applications
摘要: AgGaGenS2(n+1) crystal is a series of quaternary for mid-IR laser applications of nonlinear optical materials converting a 1.064 μm pump signal (Nd:YAG laser) to 4?11 μm laser output, but only AgGaGeS4 has attracted the most attention, remaining the other promising AgGaGenS2(n+1) crystal whose physicochemical properties can be modulated by n value. In this work, AgGaGenS2(n+1) (n = 2, 3, 4, and 5) polycrystals are synthesized by vapor transport and mechanical oscillation method with di?erent cooling processes. High-resolution X-ray di?raction analysis and re?nement have revealed that all the four compounds are crystallized in the noncentrosymmetric orthorhombic space group Fdd2, resulting in the excellent nonlinear optical property, and the distortion of tetrahedron with the variation of n value causes the discrepancy of physicochemical property. Besides, using the modi?ed Bridgman method, AgGaGenS2(n+1) single crystals with 15 mm diameter and 20?40 mm length have been grown. We have discussed the structure and composition of AgGaGenS2(n+1) by XPS spectra and analyzed the three kinds of vibration modes of tetrahedral clusters by the Raman spectra. The Hall measurement indicates that the AgGaGenS2(n+1) single crystals are p-type semiconductor, and the carrier concentration decreases with the increasing n value. All the transmittances of as-grown AgGaGenS2(n+1) samples exceeds 60% in the transparent range, especially the transmittance of AgGaGe2S6, is up to 70% at 1064 nm, and the band gap of as-grown crystal increases from 2.85 eV for AgGaGe2S6 to 2.92 eV for AgGaGe5S12. After a thermal annealing treatment, the absorptions at 2.9, 4, and 10 μm have been eliminated, and the band gap changed into the range of 2.89?2.96 eV.
关键词: Hall measurement,nonlinear optical materials,thermal annealing treatment,vapor transport,AgGaGenS2(n+1),Bridgman method,Raman spectra,mid-IR laser applications,XPS spectra,mechanical oscillation method
更新于2025-11-14 15:27:09
-
[IEEE 2018 7th Electronic System-Integration Technology Conference (ESTC) - Dresden, Germany (2018.9.18-2018.9.21)] 2018 7th Electronic System-Integration Technology Conference (ESTC) - 3D-MID for Space
摘要: Space applications demand highly reliable and low weight systems. Three-dimensional moulded interconnect device (3D-MID) processes have the potential to fulfil the requirements by combining the (electronic) packaging with routing and mechanical structure. In this paper 3D-MID technology is reviewed, most promising techniques identified and test vehicles are investigated with the focus on space usage within the ESA Artes 5.1 program.
关键词: technology,metallised plastics,Space,3D-MID
更新于2025-09-23 15:23:52
-
Open-path Halon 1301 NDIR sensor with temperature compensation
摘要: Halon 1301 (bromotrifluoromethane) is a kind of fire extinguishing agent in aviation industry. Volume concentration measurement of Halon 1301 is necessary in the design of aircraft fire protection systems. In this research, an open-path Halon 1301 non-dispersive infrared (NDIR) sensor has been developed for in-situ measurement, a novel cavity-type absorption module was designed to get fast response and more compact structure. Experiment results show that measurement was remarkably affected by temperature. Therefore, temperature compensation algorithm was also studied in this thesis, which was proven to be effective within the range of 25 oC-105 oC.
关键词: non-dispersive infrared (NDIR),mid-infrared absorption spectrum,Halon 1301,temperature compensation,concentration measurement
更新于2025-09-23 15:23:52
-
High-temperature mid-infrared absorption spectra of methanol (CH3OH) and ethanol (C2H5OH) between 930 and 1170?cm-1
摘要: A methodology was recently developed with a broad-tuning, rapid-scan external-cavity quantum-cascade-laser in conjunction with shock tube facilities to measure the high-temperature mid-infrared absorption spectra of gaseous molecules. This technique is deployed to measure the cross section profiles in the C-O stretching band for methanol (CH3OH) and ethanol (C2H5OH) between 930 and 1170 cm-1. Methanol spectra are presented from 620 to 1304K between 0.98-3.30 atm with distinctive P, Q, and R branches of the ν8 vibrational band. At elevated temperatures, the emergence of hotbands and high-J ro-vibrational transitions are clearly observed. The absorption cross sections of ethanol are measured from 296 to 1018K between 0.90-3.27 atm. The peak strength decreases with temperature, with the peak location shifting to lower wavenumbers. These measurements are compared with existing empirical models, illustrating a strong need for the development of a high-temperature spectroscopic database.
关键词: Absorption spectra,Ethanol,Mid-infrared,High-temperature,Shock tube,Methanol
更新于2025-09-23 15:23:52
-
Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material
摘要: Photonic crystals (PCs) are periodically patterned dielectrics providing opportunities to shape and slow down the light for processing of optical signals, lasing and spontaneous emission control. Unit cells of conventional PCs are comparable to the wavelength of light and are not suitable for subwavelength scale applications. We engineer a nanoscale hole array in a van der Waals material (h-BN) supporting ultra-confined phonon polaritons (PhPs)—atomic lattice vibrations coupled to electromagnetic fields. Such a hole array represents a polaritonic crystal for mid-infrared frequencies having a unit cell volume of 10??λ?3 (with λ? being the free-space wavelength), where PhPs form ultra-confined Bloch modes with a remarkably flat dispersion band. The latter leads to both angle- and polarization-independent sharp Bragg resonances, as verified by far-field spectroscopy and near-field optical microscopy. Our findings could lead to novel miniaturized angle- and polarization-independent infrared narrow-band couplers, absorbers and thermal emitters based on van der Waals materials and other thin polar materials.
关键词: van der Waals material,near-field microscopy,phonon-polaritonic crystal,mid-infrared,hexagonal boron nitride,Bragg resonance
更新于2025-09-23 15:23:52
-
Fabrication and mid-infrared property of Er:CaF2 transparent ceramics
摘要: High doped Er:CaF2 transparent ceramics (up to 10.0 at.%) were fabricated by hot pressing nanopowders which were synthesized by co-precipitation method. The composition and micrographs of the powders were characterized. The mid-infrared emission spectra and lifetimes of the 4I13/2 energy level of Er:CaF2 transparent ceramics were investigated for the first time. The mechanisms of energy transfer processes based on the emission spectra of different wavelengths were discussed. The enhanced 2.7 μm emission intensity and the reductions of near-infrared fluorescence lifetimes were observed indicating that the high concentrations of Er3+ ions are beneficial to overcome the self-termination effect and realize 2.7 μm laser output. It can be seen from these results that high concentrations Er-doped CaF2 transparent ceramics can be considered as promising host materials for the applications of mid-infrared lasers.
关键词: Transparent ceramic,Mid-infrared,Luminescence lifetime,Nanoparticle
更新于2025-09-23 15:23:52
-
Prediction of coumarin and ethyl vanillin in pure vanilla extracts using MID-FTIR spectroscopy and chemometrics
摘要: Fourier transform mid-infrared (MID-FTIR) spectroscopy coupled with chemometric analysis was used to identify and quantify coumarin (CMR) and ethyl vanillin (EVA) adulterations in pure vanilla extracts. Forty samples adulterated with CMR (0.25-10 ppm) and forty with EVA (0.25-10%) were prepared from pure vanilla extracts and characterized by MID-FTIR spectroscopy to develop chemometric models. Additionally, six commercial vanilla samples were analyzed. A soft independent modeling of class analogy (SIMCA) model was developed to identify and classify the purity from EVA-adulterated or CMR-adulterated samples. Prediction models for CMR or EVA content were developed using the principal component regression (PCR), partial least squares with single y-variables (PLS1), and with multiple y-variables (PLS2) algorithms. Moreover, the predictions of the best quantification chemometric model were compared with the results of a high-performance liquid chromatography-diode array detector (HPLC-DAD) method to evaluate the accuracy of the prediction. The PLS1 algorithm had better performance using 3 and 8 factors for EVA and CMR, respectively. The SIMCA model showed 100% recognition and rejections rates. The results demonstrate that adulteration of pure vanilla with EVA and CMR could be successfully predicted by the developed technique.
关键词: coumarin,ethyl vanillin,chemometrics,MID-FTIR,vanilla extracts,adulteration
更新于2025-09-23 15:23:52
-
2.01~ 2.42 μm all-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber
摘要: We demonstrated that an all-fiber system generates high-performance mid-infrared Raman solitons in a heavily germanium doped fiber (HGDF). A 10 m-long HGDF with a 12 μm core diameter and 64 mol.% GeO2 dopant is designed and pumped by a home-made 1.96 μm femtosecond fiber laser in the strong anomalous dispersion region. Stable and single-color Raman solitons are therefore obtained with a continuous wavelength tunability from 2.01 to 2.42 μm. The pulse duration of the mid-infrared Raman solitons can be as short as ~220 fs. The efficiency of energy transfer to a Raman soliton is about 32.5%, while the maximum average power, peak power and pulse energy are up to 27 mW, 3.6 kW and ~1 nJ, respectively. Different from previous multi-color Raman or supercontinuum-like generation from HGDFs pumped in the near-zero or normal dispersion regime, such pure mid-infrared Raman solitons exhibit excellent stability with a radio-frequency signal-to-noise ratio of ~60 dB. This is, to the best of our knowledge, the first demonstration of >2.4 μm stable Raman solitons in an all-fiber system. This work may pave a path towards compact and high-performance mid-infrared femtosecond fiber laser sources.
关键词: soliton self-frequency shift,Ultrafast fiber lasers,heavily germanium doped fiber,mid-infrared
更新于2025-09-23 15:22:29
-
Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces
摘要: Optical vortices (OVs) created from helical modes of light have extensive applications in optical manipulation, imaging and optical communications. Moreover, modulated optical vortices (MOVs) with modified wavefronts could provide new opportunities for fractionating particles and actuating microelectromechanical systems. Traditional devices for generating MOVs include spatial light modulators, spiral phase plates etc. However, such bulky devices are difficult to be applied to high-level integrated optical systems. Besides, other MOV generators are typically static and polarization-insensitive. Here, we proposed an all-dielectric metasurface to generate polarization-sensitive MOVs. The intensity patterns of the OVs can be modulated by adding a tangential modulation factor in the phase profile. Independent manipulation of two orthogonal polarizations was adopted via tailoring the geometric parameters of silicon (Si) pillars. We experimentally demonstrated that the metasurface could generate a doughnut and an actinomorphic vortex beams for different polarization inputs. In addition, the intensity pattern of the MOVs can be dynamically tuned by adjusting the polarization angle. This work can benefit optical manipulation and can be further extended to visible and near-infrared bands.
关键词: propagation phase,all-dielectric metasurfaces,mid-infrared,polarizations,modulated optical vortices
更新于2025-09-23 15:22:29