- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Decoupling mesoscale functional response in PLZT across the ferroelectric – relaxor phase transition with contact Kelvin probe force microscopy and machine learning
摘要: Relaxor ferroelectrics exhibit a range of interesting material behavior including high electromechanical response, polarization rotations as well as temperature and electric field-driven phase transitions. The origin of this unusual functional behavior remains elusive due to limited knowledge on polarization dynamics at the nanoscale. Piezoresponse force microscopy and associated switching spectroscopy provide access to local electromechanical properties on the micro- and nanoscale, which can help to address some of these gaps in our knowledge. However, these techniques are inherently prone to artefacts caused by signal contributions emanating from electrostatic interactions between tip and sample. Understanding functional behavior of complex, disordered systems like relaxor materials with unknown electromechanical properties therefore requires a technique that allows to distinguish between electromechanical and electrostatic response. Here, contact Kelvin probe force microscopy (cKPFM) is used to gain insight into the evolution of local electromechanical and capacitive properties of a representative relaxor material lead lanthanum zirconate across the phase transition from a ferroelectric to relaxor state. The obtained multidimensional data set was processed using an unsupervised machine learning algorithm to detect variations in functional response across the probed area and temperature range. Further analysis showed formation of two separate cKPFM response bands below 50°C, providing evidence for polarization switching. At higher temperatures only one band is observed, indicating an electrostatic origin of the measured response. In addition, from the cKPFM data qualitatively extracted junction potential difference, becomes independent of the temperature in the relaxor state. The combination of this multidimensional voltage spectroscopy technique and machine learning allows to identify the origin of the measured functional response and to decouple ferroelectric from electrostatic phenomena necessary to understand the functional behavior of complex, disordered systems like relaxor materials.
关键词: phase transition,machine learning,Relaxor ferroelectric,lead lanthanum zirconium titanate,piezoresponse force microscopy,k-means clustering,contact Kelvin probe force microscopy
更新于2025-09-23 15:21:01
-
A 0.5-T pure-in-plane-field magnetizing holder for in-situ Lorentz microscopy
摘要: A side-entry specimen holder capable of applying a 0.5-tesla in-plane magnetic-induction field for in-situ transmission electron microscopy was developed. Three miniaturized electromagnets with 300 × 300-μm pole area and 180-μm pole gap are stacked along the electron-beam path in the holder. The middle magnet is used for magnetizing the specimen, which is inserted into the pole gap by using a 40-μm-width cantilever for atomic-force microscopy. The upper and lower magnets are used to keep the electron beam parallel to the optical axis. Magnetic-field magnitude was determined on the basis of experimentally measured electron-deflection angles and induction-field profiles along the electron-beam path calculated by finite element electromagnetic simulation. Magnetization reversal in 300-nm-thick Nd-Fe-B magnets from the saturated state was in-situ observed by using the holder and a 1-MeV cold-field-emission transmission electron microscope. The observation revealed that domain-wall pinning occurred in different manners at the c-plane and non-c-plane grain boundaries. The holder was thereby shown to be useful for analysis of magnetization-reversal behaviors of hard magnetic materials.
关键词: In situ transmission electron microscopy,Specimen holder,Magnetic domains,Finite element method,Lorentz microscopy,Hard magnetic material
更新于2025-09-23 15:21:01
-
Misfit-Dislocation Distributions in Heteroepitaxy: From Mesoscale Measurements to Individual Defects and Back
摘要: We provide an in-depth characterization of the dislocation distribution in partially relaxed Si0.92Ge0.08/Si(001) films. This is achieved by an innovative and general method, combining two state-of-the-art characterization techniques through suitable modeling. After having inferred the dislocation positions from transmission-electron-microscopy images, we theoretically reproduce scanning-x-ray-diffraction-microscopy tilt maps measured on the very same region of the sample. We obtain a nearly perfect match between model predictions and experimental data. As a result, we claim that it is possible to establish a local, direct correlation between the dislocations revealed by the transmission-electron-microscopy analysis and the measured lattice tilt distribution.
关键词: heteroepitaxy,dislocation distribution,scanning x-ray diffraction microscopy,transmission electron microscopy,lattice tilt distribution
更新于2025-09-23 15:21:01
-
Restoration of Light Sheet Multi-View Data with the Huygens Fusion and Deconvolution Wizard
摘要: Light sheet fluorescence microscopy (LSFM) allows for high-resolution three-dimensional imaging with minimal photo-damage. By viewing the sample from different directions, different regions of large specimens can be imaged optimally. Moreover, owing to their good spatial resolution and high signal-to-noise ratio, LSFM data are well suited for image deconvolution. Here we present the Huygens Fusion and Deconvolution Wizard, a unique integrated solution for restoring LSFM images, and show that improvements in signal and resolution of 1.5 times and higher are feasible.
关键词: selective plane illumination microscopy (SPIM),Light sheet fluorescence microscopy (LSFM),deconvolution,Huygens,fusion
更新于2025-09-23 15:21:01
-
Increasing fluorescence lifetime for resolution improvement in STED nanoscopy
摘要: Super-resolution microscopy (SRM) has had a substantial impact on the biological sciences due to its ability to observe tiny objects less than 200 nm in size. Stimulated emission depletion (STED) microscopy represents a major category of these SRM techniques that can achieve diffraction-unlimited resolution based on a purely optical modulation of fluorescence behaviors. Here, we investigated how the laser beams affect fluorescence lifetime in both confocal and STED imaging modes. The results showed that with increasing illumination time, the fluorescence lifetime in two kinds of fluorescent microspheres had an obvious change in STED imaging mode, compared that in confocal imaging mode. As a result, the reduction of saturation intensity induced by the increase of fluorescence lifetime can improve the STED imaging resolution at the same depletion power. The phenomenon was also observed in Star635P labeled human Nup153 in fixed HeLa cells, which can be treated as a reference for the synthesis of fluorescent labels with the sensitivity to the surrounding environment for resolution improvement in STED nanoscopy.
关键词: confocal microscopy,super-resolution,fluorescence lifetime,fluorescence microscopy
更新于2025-09-23 15:21:01
-
High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser
摘要: Coherent Raman scattering (CRS) microscopy is widely recognized as a powerful tool for tackling biomedical problems based on its chemically specific label-free contrast, high spatial and spectral resolution, and high sensitivity. However, the clinical translation of CRS imaging technologies has long been hindered by traditional solid-state lasers with environmentally sensitive operations and large footprints. Ultrafast fibre lasers can potentially overcome these shortcomings but have not yet been fully exploited for CRS imaging, as previous implementations have suffered from high intensity noise, a narrow tuning range and low power, resulting in low image qualities and slow imaging speeds. Here, we present a novel high-power self-synchronized two-colour pulsed fibre laser that achieves excellent performance in terms of intensity stability (improved by 50 dB), timing jitter (24.3 fs), average power fluctuation (<0.5%), modulation depth (>20 dB) and pulse width variation (<1.8%) over an extended wavenumber range (2700–3550 cm?1). The versatility of the laser source enables, for the first time, high-contrast, fast CRS imaging without complicated noise reduction via balanced detection schemes. These capabilities are demonstrated in this work by imaging a wide range of species such as living human cells and mouse arterial tissues and performing multimodal nonlinear imaging of mouse tail, kidney and brain tissue sections by utilizing second-harmonic generation and two-photon excited fluorescence, which provides multiple optical contrast mechanisms simultaneously and maximizes the gathered information content for biological visualization and medical diagnosis. This work also establishes a general scenario for remodelling existing lasers into synchronized two-colour lasers and thus promotes a wider popularization and application of CRS imaging technologies.
关键词: Coherent Raman scattering,CRS microscopy,biomedical imaging,fibre laser,nonlinear optical imaging
更新于2025-09-23 15:21:01
-
Self-assembled indium nanostructures formation on InSe (0001) surface
摘要: The surfaces of 2D layered crystals are one among most perspective templates for self-assembling of metal nanostructures due to the dewetting. The initial InSe (0001) surface as topological template was characterized by means of scanning tunneling microscopy/spectroscopy (STM/STS) and low electron energy diffraction. InSe (0001) surface used in the process of formation of nanostructures found to be a template covered with array of triangular-shaped cites. The results of STM/STS studies on the formation of indium nanostructures on (0001) surface of InSe layered semiconductor crystal are presented. Indium was thermally deposited on structurally perfect InSe crystal cleavages obtained in situ. Geometrically heterogeneous (in height) initial (0001) InSe surface is used to activate the dewetting phenomenon in a manner that leads to the formation of 0D triangular-shaped nucleus of deposited indium nanostructures. STS acquired spatially averaged I–V curves changes their dependence from semiconductor one to almost metallic due to dewetting process. Moreover, the spatial arrangement of formed indium nanostructures is powered by hexagonal lattice symmetry of InSe surface on macroscale.
关键词: Hetero nanostructures,Nanostructures template-directed assembly,Layered crystals,Scanning tunneling microscopy/spectroscopy,Indium selenide,Low energy electron diffraction
更新于2025-09-23 15:21:01
-
Imaging Dye Aggregation in MK-2, N3, N749, and SQ-2 dye?·?·?·TiO <sub/>2</sub> Interfaces That Represent Dye-Sensitized Solar Cell Working Electrodes
摘要: Dye-sensitized solar cells (DSSCs) are a strong contender for next-generation photovoltaic technology with niche applications as solar-powered windows. The performance of a DSSC is particularly susceptible to the dye sensitizer, which is adsorbed onto the surface of a wide-band-gap semiconductor such as TiO2, to form the working electrode. The nature by which such surfaces are sensitized stands to influence the resulting dye···TiO2 interfacial structure and thence the operational performance of the DSSC working electrode. In particular, a nanoscopic understanding of the sensitization process would ultimately help to improve DSSC device function. In this study, atomic force microscopy (AFM) is used to image the nanoscopic formation of dye···TiO2 interfacial structures. This employs, as case studies, four well-known DSSC dyes adsorbed onto amorphous TiO2 substrates: two ruthenium-based dyes, N3 and the Black Dye (N749); and two organic dyes, the thiophenylcarbazole, MK-2, and the zwitterionic squaraine, SQ-2. We discover that all four dyes present some form of aggregation upon sensitization of TiO2, whose spatial distributions show distinct nanoaggregate particle characteristics. These particle clusters of N749, N3, and MK-2 are found to assemble in lines of nanoaggregates, while clusters of SQ-2 dye chromophores distribute themselves randomly on the amorphous TiO2 substrates. This nanoparticle structural assembly persists even when these dye···TiO2 interfaces are fabricated using hundred-fold diluted dye sensitization concentrations. The formation of dye aggregates in N749 is further studied as a function of dye sensitization time. This tracks the pattern formation of aggregates of N749 and reveals that dye aggregation begins within the first hour and has completed within a 5 h period. The large expanse of dye nanoaggregates observed shows that dye···dye interactions are much more important than previously envisaged, while the nature of their spatial distribution can be related to different aggregation modes of the dye molecules. These nanostructural features will undoubtedly impact the performance of DSSCs.
关键词: aggregation,N749,dye-sensitized solar cell,atomic force microscopy,N3,SQ-2,MK-2
更新于2025-09-23 15:21:01
-
Thermal conductivity and diffusivity of triple-cation perovskite halide materials for solar cells
摘要: We report on the measurement of thermal conductivity and thermal diffusivity by a modulated thermoreflectance microscopy technique on a mixed-cation perovskite material [Cs0.05(formamidinium0.83methylammonium0.17)0.95Pb(I0.83Br0.17)3] widely applied for solution-processed perovskite solar cells. Such materials are supposed to present improved thermal stability compared to methylammonium-based single cation perovskites. Our measurements are performed on perovskite/TiO2/SnO2:F/SiO2 structures, with perovskite thicknesses ranging between 250 nm and 1000 nm. This configuration is the one of a real solar cell, with the same substrate and intermediate layers as of an operating device. We measured a thermal conductivity kper of 0.26 ± 0.03 W m?1 K?1 and a thermal diffusivity Dper of 3.5 × 10?7 ± 0.5 m2 s?1. The value for thermal conductivity is comparable to the one measured on single cation perovskites, which is generally in the 0.2–0.6 range. The value for thermal diffusivity has not been reported previously.
关键词: perovskite solar cells,thermal conductivity,modulated thermoreflectance microscopy,thermal diffusivity
更新于2025-09-23 15:21:01
-
Thulium fiber laser: ready to dust all urinary stone composition types?
摘要: Purpose To evaluate whether stone dust can be obtained from all prevailing stone composition types using the thulium fiber laser (TFL) for lithotripsy. Where applicable, stone dust was further characterized by morpho-constitutional analysis. Methods Human urinary stones were submitted to in vitro lithotripsy using a FiberLase U2 TFL generator with 150 μm silica core fibers (IPG Photonics?, IPG Medical?, Marlborough, MA, USA). Laser settings were 0.05 J, 320 Hz and 200 μs. A total of 2400 J were delivered to each stone composition type. All evaluated stones had a > 90% degree of purity (calcium oxalate monohydrate, calcium oxalate dihydrate, uric acid, carbapatite, struvite, brushite and cystine). Spontaneously floating stone particles were considered as stone dust and collected for analysis by scanning electron microscopy and Fourier transform infrared spectroscopy. Results Stone dust could be retrieved from all evaluated urinary stones after TFL lithotripsy. Most stone dust samples revealed changes in crystalline organization, except for calcium oxalate monohydrate and carbapatite, which conserved their initial characteristics. Mean maximal width of stone dust particles did not exceed 254 μm. Conclusions The TFL is capable to produce stone dust from all prevailing stone types. Morpho-constitutional changes found in stone dust suggest a photothermal interaction of laser energy with the stone matrix during TFL lithotripsy.
关键词: Urolithiasis,Stone dust,Fourier transform infrared spectroscopy,Lithotripsy,Scanning electron microscopy,Thulium fiber laser
更新于2025-09-23 15:21:01