修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Microwave Hydrothermal Synthesis of In <sub/>2</sub> O <sub/>3</sub> -ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties

    摘要: Indium oxide (In2O3) doped zinc oxide (ZnO) nanocomposites were successfully synthesized through a facile microwave hydrothermal method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms (BET) and UV-Vis diffuse reflectance spectroscopy. The morphology of In2O3-ZnO composites was observed to be like flowers, and the diameter of particles constituting the porous petal was about 30 nm. The photoelectrocatalytic test results showed that the photoelectrocatalytic methylene blue (MB) degradation efficiency using In2O3-ZnO nanocomposites as photocatalysts under visible light irradiation and a certain voltage could reached above 95.3% after 60 min, much higher than that of In2O3 particles and ZnO particles. The enhanced photoelectrocatalytic activity was attributed to the doping of In2O3 and applied voltage, which beneficially reduced the recombination of electrons and holes in the photoelectrocatalytic process, therefore, it promoted the production of active species (?OH and ?O2-).

    关键词: photoelectrochemical properties,visible light irradiation,methylene blue degradation,In2O3-ZnO nanocomposites,microwave hydrothermal synthesis

    更新于2025-09-23 15:22:29

  • Q-switched fiber laser based on CdS quantum dots as a saturable absorber

    摘要: In this work, a Q-switched fiber laser is demonstrated using quantum dots (QDs) cadmium sulfide (CdS) as a saturable absorber (SA) in an erbium-doped fiber laser (EDFL) system. The QD CdS is synthesized via the microwave hydrothermal assisted method and embedded into polyvinyl alcohol (PVA). The QD CdS/PVA matrix film is sandwiched in between two fiber ferrules by a fiber adapter. The generation of Q-switched fiber laser having a repetition rate, a pulse width, and a peak-to-peak pulse duration of 75.19 kHz, 1.27 μs, and 13.32 μs, respectively. The maximum output power of 3.82 mW and maximum pulse energy of 50.8 nJ are obtained at the maximum pump power of 145.9 mW. The proposed design may add to the alternative material of Q-switched fiber laser generation, which gives a high stability output performance by using quantum dots material as a saturable absorber.

    关键词: CdS Quantum Dots,erbium-doped fiber laser,microwave hydrothermal assisted method,saturable absorber,Q-switched fiber laser

    更新于2025-09-23 15:19:57

  • Three-dimensional ZnO/ZnxCd1?xS/CdS nanostructures modified by microwave hydrothermal reaction-deposited CdSe quantum dots for chemical solar cells

    摘要: Effective interfaces composed of smart materials could play a critical role in the rapid transfer and separation of charges to achieve the high power-conversion efficiency of solar cells. In this work, we report an efficient chemical solar cell that uses a ZnO/ZnxCd1?xS/CdS structure, modified with CdSe deposited with a microwave hydrothermal technique, for rapid transport of charges using a frame construction to allow for reuse. The morphology, nanostructure, and reaction mechanisms of CdS nanorods and the ZnxCd1?xS layer were systematically investigated. The results indicated that light absorption expands from 550 nm of CdS to 700 nm because of the absorption of nearly all the visible light by deposited CdSe quantum dots. The effects of the compositional structure on cell performance are investigated to reveal the enhancement mechanism, which is mainly attributed to the suitable nano-branch structure, high light absorbability, low charge transfer resistance, and low recombination rate. This work demonstrates a potential universal method of designing an interface with a multi-component composite for efficient charge transport and separation, not only in chemical solar cells but with extensions to photocatalysis and water splitting uses as well.

    关键词: Chemical solar cell,Composite structures,ZnO/ZnxCd1?xS/CdS,CdSe quantum dots,Microwave hydrothermal

    更新于2025-09-12 10:27:22

  • Photocatalytic inactivation of <i>Escherischia coli</i> under UV light irradiation using large surface area anatase TiO <sub/>2</sub> quantum dots

    摘要: In this study, high specific surface areas (SSAs) of anatase titanium dioxide (TiO2) quantum dots (QDs) were successfully synthesized through a novel one-step microwave–hydrothermal method in rapid synthesis time (20 min) without further heat treatment. XRD analysis and HR-TEM images showed that the as-prepared TiO2 QDs of approximately 2 nm size have high crystallinity with anatase phase. Optical properties showed that the energy band gap (Eg) of as-prepared TiO2 QDs was 3.60 eV, which is higher than the standard TiO2 band gap, which might be due to the quantum size effect. Raman studies showed shifting and broadening of the peaks of TiO2 QDs due to the reduction of the crystallite size. The obtained Brunauer–Emmett–Teller specific surface area (381 m2 g?1) of TiO2 QDs is greater than the surface area (181 m2 g?1) of commercial TiO2 nanoparticles. The photocatalytic activities of TiO2 QDs were conducted by the inactivation of Escherischia coli under ultraviolet light irradiation and compared with commercially available anatase TiO2 nanoparticles. The photocatalytic inactivation ability of E. coli was estimated to be 91% at 60 μg ml?1 for TiO2 QDs, which is superior to the commercial TiO2 nanoparticles. Hence, the present study provides new insight into the rapid synthesis of TiO2 QDs without any annealing treatment to increase the absorbance of ultraviolet light for superior photocatalytic inactivation ability of E. coli.

    关键词: TiO2,X-ray diffraction,quantum dots,photocatalysis,microwave–hydrothermal

    更新于2025-09-11 14:15:04

  • High-fluorescent carbon dots (CDs) originated from China grass carp scales (CGCS) for effective detection of Hg(II) ions

    摘要: Carbon dots (CDs) as a kind of environment-friendly fluorescent nanomaterial has been actively studied because of wide and potential applications, such as bioimaging and biosensors. It is worth mentioning that preparing CDs from the recycling of carbonaceous waste has received considerable research interest. We proposed a simple carbon dots synthesis technique, that is, using China grass carp scales (CGCS) as original and green materials by a one-step microwave hydrothermal method to prepare CDs. Since the mercury ion has strongly sulphophile, S atoms display higher thermodynamic affinity and faster integrating process with Hg2+ ions. Due to the presence of large amount of cysteine-containing sulfhydryl groups, the obtained CGCS-CDs can be used as a specific fluorescence probe for detecting Hg2+ ions. Subsequently, CGCS-CDs were characterized by HR-TEM, XRD, FT-IR and XPS analyses. The optical properties of CGCS-CDs were elucidated by fluorescence and UV–vis spectra. Additionally, the effects of pH values and salt concentrations on optical properties of CGCS-CDs were also researched by fluorescence spectra. Under optimal conditions, the decrease of fluorescence intensity displays a good linear relationship with allowable Hg2+ ion detection concentration range of 0.014–30 μmol/L and a limit of detection (LOD) of 0.014 μmol/L is acquired. Meanwhile, the effect of other metal ions on the detection of Hg2+ ions by using CGCS-CDs as fluorescence probe was studied, suggesting that the CGCS-CDs could be an excellent fluorescence probe for the detection of Hg2+ ions. Eventually, the CGCS-CDs were proven to be low toxicity and applied for Hg2+ ions detection in lake water and cosmetic, demonstrating their potential towards diverse applications.

    关键词: Sulfhydryl group,Microwave hydrothermal,Nanoscale sensing,Mercury,Carbon dots (CDs),China grass carp scales (CGCS)

    更新于2025-09-09 09:28:46