修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

614 条数据
?? 中文(中国)
  • Mn Doping CsPbI3 Film Towards High-Efficiency Solar Cell

    摘要: A doping technique that introduces suitable elements into the host material is extensively utilized to modulate perovskite lattice structure, stabilize crystallographic phases and achieve various optical and electronic properties. In this work, we substitute Pb2+ in CsPbI3 film with Mn2+ to improve the phase stability of the material. The crystalline quality of perovskite materials with Mn2+ doping is significantly improved, and the defect densitys is reduced. The power conversion efficiency (PCE) of an inorganic perovskite solar cell with optimized Mn2+ doping (2%) reached 16.52 %, which is higher than the 15.05% of the reference, with an enhancement of ~ 10%. Simultaneously, the humidity and thermal stability were boosted by the Mn doping, which is attributed to the introduction of Mn shrinking the lattice of the perovskite material and enhancing the formation energy of the CsPbI3 film.

    关键词: Power Conversion Efficiency,Mn-Doping,CsPbI3,Phase Stability,Perovskite Solar cell

    更新于2025-09-23 15:21:01

  • Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials

    摘要: In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE figure of merit, reaching unprecedented ZT values up to 0.65.

    关键词: SnSe2,reactive ink,thermoelectricity,crystallographically textured nanomaterial,modulation doping

    更新于2025-09-23 15:21:01

  • Photoluminescence of (Zn, Pb, Mn)S Quantum Dots in Polyacrylate Matrix

    摘要: Solutions of (Zn, Pb, Mn)S quantum dots with different molar ratios between cations are produced by colloidal synthesis in a methyl methacrylate (MMA) medium. By the thermal polymerization of MMA in a block, the colloidal solutions are converted into the vitreous state. The optical transparency of the poly(MMA)/(Zn, Pb, Mn)S composites at the wavelengths >500 nm reaches 90% at a thickness of the absorbing layer up to 5 mm. The photoluminescence of the composites in the spectral range 400–480 nm is defined by the recombination of electrons at the levels of defects of the ZnS crystal structure, and photoluminescence in the range 520–620 nm by the 4T1 → 6A1 electronic transition in Mn2+ ions. Photoluminescence excitation is a result of interband transitions in ZnS, with energy transfer from the conduction band of ZnS to the levels of Mn2+ ions. The luminescence spectrum depends on the molar ratio between Mn2+ and Pb2+ ions, the order of introduction of substances into the reaction mixture, and the excitation-radiation wavelength.

    关键词: acrylate composites,lead ions,doping,luminescence,manganese ions,zinc sulfide,quantum dots

    更新于2025-09-23 15:21:01

  • Nonresonant Polarized Raman Spectra Calculations of Nitrogen-Doped Single-Walled Carbon Nanotubes: Diameter, Chirality, and Doping Concentration Effects

    摘要: Raman spectra of nitrogen-doped single-walled carbon nanotubes are calculated using the spectral moment’s method combined with the bond polarizability model. The influence of the nanotube diameter and chirality is investigated. We also address the important question of the effect of the N-doping concentration, and we propose an equation to estimate the doping concentration from the knowledge of the tube diameter and the frequency of the radial breathing mode.

    关键词: spectral moment’s method,Raman spectra,N-doping concentration,nanotube diameter,nitrogen-doped single-walled carbon nanotubes,bond polarizability model,chirality

    更新于2025-09-23 15:21:01

  • Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites

    摘要: Solar energy harvesting and conversion into useful chemical energy with the aid of semiconductor photocatalysts is a promising technique to solve both energy and environmental issues. This work reports a successful synthesis of CdSe quantum dots (QDs) modified phosphorus doped g-C3N4 (P-CN) for advanced photocatalytic applications. Phosphorus doping and structural coupling with CdSe QDs are shown to significantly extend visible-light response of g-C3N4 up to 700 nm. The optimized sample 4CdSe/P-CN demonstrates enhanced visible-light driven overall water splitting activities for H2 and O2 evolution i.e. 113 and 55.5 μmol.h?1.g?1, respectively, as well as very high photocatalytic CO2 to CH4 conversion efficiency (47 μmol.h?1.g?1). It also exhibit higher activity (78 %) for 2,4-dichlorophenol degradation as compared to pristine CN-sample. Combined photoluminescence, transient/single wavelength photocurrent, photoelectrochemical, and coumarin fluorescence spectroscopy demonstrate that 4CdSe/P-CN nanocomposite exhibit enhanced charge separation efficiency which is responsible for improved visible light catalytic activities. Our work thus provide a new strategy to design low-cost and sustainable photocatalysis with wide visible-light activity for practical overall water splitting and CO2 reduction applications.

    关键词: Expending visible-light response,g-C3N4,Phosphorus doping,Solar fuel,CdSe quantum dots

    更新于2025-09-23 15:21:01

  • Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance

    摘要: The formation of heterojunctions between wide- and narrow-bandgap photocatalysts is commonly employed to boost the efficiency of photocatalytic hydrogen generation. Herein, the photoactivity of urchin-like rutile particles is increased by decorating with pristine as well as Er- or Yb-doped Bi2S3 quantum dots (QDs) at varied QD loadings (1–20 wt%) and doping degrees (1–15 mol%), and the best hydrogen evolution performance is achieved at Er and Yb contents of 10 mol%. Specifically, a hydrogen productivity of 1576.7 μmol?gcat?1 is achieved after 20-h irradiation for TiO2 decorated by 10 mol% Yb-doped Bi2S3 QDs. Theoretical calculations show that the introduction of defects into the Bi2S3 lattice through Er/Yb doping promotes the creation of the levels and facilitates transport of photogenerated charges during the photocatalytic process.

    关键词: quantum dots,photocatalysis,TiO2,lanthanide doping,Bi2S3,hydrogen generation

    更新于2025-09-23 15:21:01

  • Solar cell based on vertical graphene nano hills directly grown on silicon

    摘要: We demonstrate a solar cell application based on vertical graphene nano hills (VGNH) directly grown without using a catalyst. The photovoltaic device based on VGNH grown on top of interfacial layer Al2O3 is compared with that on top of bare silicon by critically analyzing its electrical properties. The role of the interfacial layer is to minimize surface recombination and enhance its built-in potential. Our key process is simple to fabricate large-area devices, avoiding an unreliable transfer process. In addition, the thickness of VGNH is optimized and the surface texturing of silicon is performed to overcome the crucial problem of the high reflectivity of silicon. A low reflectivity of thick layers of VGNH is achieved with low series resistance despite of the vertical structure, which is beneficial for high photocurrent. A higher work function of VGNH ~ 4.7 eV is measured by KPFM. The conversion efficiency of 10.97% is achieved with an active area of 0.9 cm2 by co-doping with PEDOT: PSS and inorganic acid HNO3. Moreover, the photo-responsivity of the VGNH-based device is estimated as 1.196 AW-1 under deep ultraviolet light.

    关键词: vertical graphene,graphene doping,graphene nano hills,directly grown graphene,solar cell,anti-reflecting coating,Schottky junction

    更新于2025-09-23 15:21:01

  • Superior ferroelectric photovoltaic properties in Fe -modified (Pb,La) (Zr,Ti)O3 thin film by improving the remnant polarization and reducing the band gap

    摘要: In order to develop ferroelectric photovoltaic devices with high power conversion e?ciency, ferroelectric materials must have simultaneously large remnant polarization and narrow band gap so as to e?ciently separate photo-generated carriers and absorb more sunlight. Based on this idea, in this report, we introduce Fe3+ into Pb0·93La0·07(Zr0·6Ti0.4)0.9825O3 ferroelectric thin ?lm to increase the remnant polarization and decrease the band gap of the thin ?lm. In doing so, we prepare Fe3+ doping Pb0·93La0·07(Zr0·6Ti0.4)0.9825O3 thin-?lm based photovoltaic devices. The experimental results indicate that with increasing the Fe3+ amount, the remnant polarization of the ?lm ?rst improves to the maximum value of 50 μC/cm2 at the 4.8 mol% Fe3+ content and then reduces gradually, while the band gap continuously decreases. In addition, at a negative poling voltage, the device exhibits larger short-circuit current and open-circuit voltage in comparison with those obtained at the positive poling voltage, which is attributed to the depolarization electric ?eld originating from the remnant polarization of ferroelectric thin ?lms in the same direction as the built-in electric ?eld caused by the Schottky barrier. In this report, the most superior photovoltaic performances with the open-circuit voltage of as large as ?0.55 V and short-circuit current of as high as 0.4 μA/cm2 are obtained in the device with 4.8 mol% Fe3+ amount and at ?5 V poling voltage. This is on account of the improved sunlight absorbing properties and photo-generated carriers separation ability of the device. This work provides a novel idea for designing and preparing ferroelectric photovoltaic devices with high power conversion e?ciency.

    关键词: Fe3+ doping,Photovoltaic properties,Band gap,Remnant polarization,Ferroelectric thin ?lm

    更新于2025-09-23 15:21:01

  • Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes

    摘要: Colloidal quantum dots and other semiconductor nanocrystals are essential components of next-generation lighting and display devices. Due to their easily tunable and narrow emission band and near-unity fluorescence quantum yield, they allow cost-efficient fabrication of bright, pure-color and wide-gamut light emitting diodes (LEDs) and displays. A critical improvement in the quantum dot LED (QLED) technology was achieved when zinc oxide nanoparticles (NPs) were first introduced as an electron transport layer (ETL) material, which tremendously enhanced the device brightness and current efficiency due to the high mobility of electrons in ZnO and favorable alignment of its energy bands. During the next decade, the strategy of ZnO NP doping allowed the fabrication of QLEDs with a brightness of about 200 000 cd/m2 and current efficiency over 60 cd/A. On the other hand, the known ZnO doping approaches rely on a very fine tuning of the energy levels of the ZnO NP conduction band minimum; hence, selection of the appropriate dopant that would ensure the best device characteristics is often ambiguous. Here we address this problem via detailed comparison of QLEDs whose ETLs are formed by a set of ZnO NPs doped with Al, Ga, Mg, or Li. Although magnesium-doped ZnO NPs are the most common ETL material used in recently designed QLEDs, our experiments have shown that their aluminum-doped counterparts ensure better device performance in terms of brightness, current efficiency and turn-on voltage. These findings allow us to suggest ZnO NPs doped with Al as the best ETL material to be used in future QLEDs.

    关键词: electron transport layer,doping,zinc oxide nanoparticles,light-emitting diodes,quantum dots

    更新于2025-09-23 15:21:01

  • Ti, Zn co-doped hematite photoanode for solar driven photoelectrochemical water oxidation

    摘要: Although there have been many reports of metal doping to ameliorate the drawbacks of hematite as the photoanode for water oxidation, most of them focused on monometallic doping, and only a few of them payed attention to bimetallic doping. What is worse, the synergetic mechanism between two metal dopants was not su?ciently studied, especially the density functional theory (DFT) calculation. In this work, the n-type hematite was synthesized by introducing Ti dopant into hematite through the hydrothermal method, and dipping-sintering treatment was employed to further introduce homogeneously dispersed Zn dopant into that, forming the Ti, Zn co-doped hematite. Under the optimal condition, Ti-doped hematite photoanode reached approximately 2-times enhancement of the photocurrent density compared with the pristine one at 1.23 V vs. RHE, while Ti, Zn co-doped hematite anode obtained another 25% elevation. UV –Vis spectroscopy, Mott –Schottky plots, EIS analysis, photo-oxidation of hole scavenger (H 2 O 2 ), and DFT calculation were employed to understand the role of Ti, Zn dopant. Based on the obtained results, the synergetic mechanism of two dopants was discussed, i.e., the improvement of PEC performance of Ti, Zn co-doped hematite photoanode was possibly attributed to greater carrier density and improved charge separation e?ciency at the surface of hematite. This work provides new strategy and understanding of the improvement of PEC performance of hematite by doping engineering.

    关键词: Photoelectrochemical water oxidation,Zn co-doping,Ti,DFT calculation,Hematite

    更新于2025-09-23 15:21:01