修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

205 条数据
?? 中文(中国)
  • Stochastic stimulated electronic x-ray Raman spectroscopy

    摘要: Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s ! p(cid:2) transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.

    关键词: CO molecule,covariance analysis,Stochastic stimulated electronic x-ray Raman spectroscopy,resonant inelastic x-ray scattering,XFEL

    更新于2025-09-04 15:30:14

  • Neuronal Expression of Junctional Adhesion Molecule-C is Essential for Retinal Thickness and Photoreceptor Survival

    摘要: Background: Photoreceptor cell death is a key pathology of retinal degeneration diseases. To date, the molecular mechanisms for this pathological process remain largely unclear. Junctional adhesion molecule-c (Jam-c) has been shown to play important roles in different biological events. However, its effect on retinal neuronal cells is unknown. Objective: To determine the effect of Jam-c on adult mouse eyes, particularly, on retinal structure, vasculature and photoreceptor cells, in order to explore potential important target molecules for ocular diseases. Methods: Jam-c global knockout mice, endothelial-specific and neuronal-specific Jam-c conditional knockout mice using Tie2-Cre and Nestin-Cre mice respectively were used in this study. Mouse eyes were harvested from the different groups and eye size examined. Cryosections of the eyes were made and stained with Hematoxylin and Eosin (H&E) and the thicknesses of retinal layers measured. Retinal blood vessels and cone and rod photoreceptors were analyzed using isolectin B4, peanut agglutinin and rhodopsin as markers respectively. In vivo Jam-c knockdown in mouse eyes was performed by intravitreal injection of Jam-c shRNA. Jam-c expression in the retinae was quantified by real-time PCR. Results: Global Jam-c gene deletion in mice resulted in smaller eyes and decreased the diameters of lens and iris. Jam-c-/- mice display marked thinning of the outer nuclear layer (ONL), less numbers of photoreceptor cells, and abnormal retinal vasculature. Importantly, neuronal-specific Jam-c deletion led to similar phenotype, whereas no obvious defect was observed in endothelial-specific Jam-c knockout mice. Moreover, Jam-c knockdown by shRNA also decreased ONL thickness and photoreceptor numbers. Conclusion: We found that Jam-c is critically required for the normal size and retinal structure. Particularly, Jam-c plays important roles in maintaining the normal retinal thickness, vasculature and photoreceptor numbers. Jam-c thus may therefore have important roles in various ocular diseases.

    关键词: retina,photoreceptor degeneration,neuroprotection.,vasculature,Junctional adhesion molecule-c

    更新于2025-09-04 15:30:14

  • Single-Molecule Kinetic Fingerprinting for the Ultrasensitive Detection of Small Molecules with Aptasensors

    摘要: Aptamers have emerged as promising molecular tools for small-molecule analyte sensing. However, the performance of such aptasensors is generally limited by leakage since it has been difficult to completely suppress signal in the absence of analyte, resulting in a compromise between sensitivity and specificity. Here, we describe a methodology for the ultrasensitive detection of analytes combining aptasensors with single-molecule kinetic fingerprinting. A short, fluorescently labeled DNA probe is utilized to detect the structural changes upon ligand binding to the designed hairpin-shaped aptasensor probe. The Poisson statistics of binding and dissociation events of the DNA probe to single surface-immobilized aptasensor molecules is monitored by total internal reflection fluorescence microscopy, permitting the high-accuracy discrimination of the ligand bound and ligand-free states, resulting in zero background. The programmable dynamics of the hairpin enables fine-tuning of the hybridization kinetics of the fluorescent probe, rendering the acquisition time sufficiently flexible to optimize discrimination. Remarkable detection limits are achieved for a diverse set of analytes when spiked into chicken meat extract: the nucleotide adenosine (0.3 pM), the insecticide acetamiprid (0.35 pM), and the dioxin-like toxin PCB-77 (0.72 pM), which is superior to recently reported aptasensors. Our generalizable method significantly improves the performance of aptasensors, with the potential to extend to other molecular biomarkers.

    关键词: Aptamers,Aptasensors,Single-molecule kinetic fingerprinting,Ultrasensitive detection,Small molecules

    更新于2025-09-04 15:30:14

  • Metal-organic frameworks as SERS substrates with high tailorability

    摘要: Surface enhanced Raman scattering (SERS) is a widely used analytical technique for detecting trace-level molecules based on an indispensable SERS substrate. SERS substrates with high tailorability are assumed to be attractive and desirable for SERS detection, because the substrates match the need for the selective detection of different species. Nevertheless, the rational design of such SERS substrates is rather challenging for both noble-metal and semiconductor substrates. Herein, expanding beyond conventional SERS substrates, we demonstrate that metal-organic framework (MOF) materials can serve as a type of SERS substrate with molecular selectivity, which are rarely realized for SERS detection without any special pretreatment. A salient structural characteristic of MOF-based SERS substrates benefiting the SERS selectivity is their high tailorability. By controlling the metal centers, organic ligands, and framework topologies of our MOF-based SERS substrates, we show that the electronic band structures of MOF-based SERS substrate can be purposively manipulated to match those of the target analytes, thus resulting in different detectable species. Going further, the SERS enhancement factors (EFs) of the MOF-based SERS substrates can be greatly enhanced to as high as 106 with a low detection limit of 10-8 M by pore-structure optimization and surface modification, which is comparable to the EFs of noble metals without “hot spots” and recently-reported semiconductors. This selective enhancement is interpreted as being due to the controllable combination of several resonances, such as the charge-transfer, interband and molecule resonances, together with the ground-state charge-transfer interactions. Our study opens a new venue for the development of SERS substrates with high-design flexibility, which is especially important for selective SERS detection towards specific analytes.

    关键词: Surface enhanced Raman scattering (SERS),tailorability,charge-transfer,molecular selectivity,interband and molecule resonances,enhancement factors (EFs),metal-organic framework (MOF),ground-state charge-transfer interactions,SERS substrates

    更新于2025-09-04 15:30:14

  • Electronically programmable photonic molecule

    摘要: Physical systems with discrete energy levels are ubiquitous in nature and are fundamental building blocks of quantum technology. Realizing controllable artificial atom- and molecule-like systems for light would enable coherent and dynamic control of the frequency, amplitude and phase of photons. In this work, we demonstrate a ‘photonic molecule’ with two distinct energy levels using coupled lithium niobate microring resonators and control it by external microwave excitation. We show that the frequency and phase of light can be precisely controlled by programmed microwave signals, using concepts of canonical two-level systems including Autler–Townes splitting, Stark shift, Rabi oscillation and Ramsey interference. Through such coherent control, we show on-demand optical storage and retrieval by reconfiguring the photonic molecule into a bright–dark mode pair. These results of dynamic control of light in a programmable and scalable electro-optic system open doors to applications in microwave signal processing, quantum photonic gates in the frequency domain and exploring concepts in optical computing and topological physics.

    关键词: topological physics,coherent control,optical computing,microring resonators,lithium niobate,optical storage,microwave excitation,photonic molecule,quantum photonics

    更新于2025-09-04 15:30:14