修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
研究主题
  • cascaded H-bridge (CHB) multilevel converters
  • PWM clamping strategy
  • solar PhotoVoltaic (PV)
  • fault tolerance
  • reactive power
  • Ancillary services
应用领域
  • Electrical Engineering and Automation
机构单位
  • Indian Institute of Technology
56 条数据
?? 中文(中国)
  • Morphological regulation of all-inorganic perovskites for multilevel resistive switching

    摘要: Enormous attention has been paid to all-inorganic cesium lead halide perovskites in various photoelectronic fields for their remarkable performances. However, comparing to their analogue organic-inorganic hybrid perovskites, the film morphology of such all-inorganic lead halide perovskites is difficult to control due to the low solubility of cesium salt. Here, we propose a new fabrication routine to control the film morphology of CsPbBr3. A series of CsPbBr3 thin films with big grains (≈800 nm) were successfully prepared. The memristors based on such CsPbBr3 thin films take on typical bipolar resistive switching behavior and remarkable characteristics such as high Ron/Roff ratio (≈105), very low working voltage (≈ ± 1 V), and long data retention (≥104 s). Furthermore, through modulating the film morphology, memristors with multilevel resistive switching behavior can be easily prepared. These advantages demonstrate that the all-inorganic cesium lead halide memristors possess great potential for future application.

    关键词: Memristor,Morphological regulation,Multilevel resistive switching,All-inorganic perovskite

    更新于2025-09-23 15:23:52

  • Enhanced Active Power balancing capability of Grid connected Solar PV fed Cascaded H-bridge Converter

    摘要: Cascaded H-bridge converter is a promising solution for next generation large scale PV system having both active and reactive power exchange capacity. However, one challenge with this converter is unbalanced power generation among the clusters or cells due to variation in radiation level, temperature, dusting on PV cells etc. In order to inject balanced power to the grid, in this paper, a controlled exchange of reactive power is proposed so that the converter can work with unbalanced power generation within the clusters. Magnitude of reactive power exchange is derived and necessary conditions discussed. Additionally, the magnitude of zero voltage is derived taking into account both active and reactive power exchange with the grid. By exchanging reactive power, the converter can also be used during low voltage ride through (LVRT) condition. This paper introduces a novel representation of unbalanced power generation using barycentric coordinate system which helps to identify regions in the power plane which require the exchange of reactive power. The proposed method is verified through computer simulation and in a laboratory prototype.

    关键词: Maximum Power point tracking (MPPT),Active power,Zero sequence voltage,Reactive power,Solar Photovoltaic,Cascaded H-bridge multilevel converter(CHB)

    更新于2025-09-23 15:23:52

  • A Hybrid MMC-Based Photovoltaic and Battery Energy Storage System

    摘要: This paper proposes a new configuration and its control strategy for a modular multilevel converter (MMC)-based photovoltaic (PV)-battery energy storage (BES) system. In the MMC-based PV-BES system, each PV submodule is interfaced from its dc side with multiple PV generators using isolated dual active bridge (DAB) dc-dc converters. One BES system is embedded into each arm of the converter and is connected to the dc port of the associated BES submodule using multiple isolated DAB converters. The embedded BES systems are used to smooth the output power of the PV generators and limit the rate of change of the power delivered to the host grid. Moreover, they enable compensation of power mismatches between the arms and legs of the system by exchanging power with the arms of the converter. The paper then proposes a hybrid power mismatch elimination strategy using a combination of power exchange with the arms of the converter and internal power flow control of the MMC. The proposed hybrid power mismatch elimination strategy employs BES systems and differential currents to compensate power mismatches and transfer power between the arms and legs of the converter, respectively. The effectiveness of the proposed power smoothing technique using the embedded BES systems and hybrid power mismatch elimination strategy is demonstrated using time-domain simulations conducted on a switched model of the PV-BES system in PSCAD/EMTDC software environment.

    关键词: control,modular multilevel converter,power electronics,battery energy storage,photovoltaic,power mismatch,Differential current,energy conversion,integration

    更新于2025-09-23 15:22:29

  • Cascaded H-Bridge MLI and Three-Phase Cascaded VSI Topologies for Grid-Connected PV Systems with Distributed MPPT

    摘要: Cascaded multilevel inverter topologies have received a great deal of attention for grid-connected PV systems. In this paper, three-cascaded multilevel inverter configurations are proposed for grid-connected PV applications. These are the three-phase cascaded H-bridge multilevel inverter topology, three-phase cascaded voltage-source inverter topology using inductors, and three-phase cascaded voltage-source inverter topology using coupled transformers. Distributed maximum power point tracking (MPPT) of PV modules using perturbation and observation algorithm is used for all presented topologies. In all presented configurations, each PV module is connected to one DC-DC isolated ?uk converter for best MPPT achievement. Simulation is achieved by using the SIMULINK environment. The simulation results show that the three proposed topologies function well in improving the grid’s power quality. The grid currents are kept in phase with the grid voltage to ensure unity power factor, and the THD of the grid currents are within the acceptable range. The proposed topologies are experimentally implemented in the lab, and the switching pulses are generated with the help of the MicroLabBox data acquisition system. Comparing the three topologies according to the number of switches, voltage, and current stresses on switches and THD of the generated voltages and grid currents and according to the efficiency has been achieved in this paper, both experimentally and by simulation. The simulation and experimental results and comparisons are presented to verify the proposed topologies’ effectiveness and reliability.

    关键词: voltage-source inverter,power quality,distributed MPPT,cascaded multilevel inverter,grid-connected PV systems,H-bridge

    更新于2025-09-23 15:22:29

  • [IEEE 2018 20th International Conference on Transparent Optical Networks (ICTON) - Bucharest (2018.7.1-2018.7.5)] 2018 20th International Conference on Transparent Optical Networks (ICTON) - Mitigation of Amplitude and Phase Distortions by Using Conjugate-NOLM Regenerator

    摘要: In this paper we propose a conjugate nonlinear optical loop mirror scheme (Conj-NOLM) by cascading two NOLMs with an intermediate optical phase conjugator stage (OPC). This new configuration utilizes mid-span spectral inversion to cancel out the nonlinear phase distortion that is introduced by the two NOLM units. Moreover, numerical investigation has been carried out for 16-QAM signals demonstrating increased robustness against accumulated amplitude and phase distortions in the transmission links.

    关键词: conjugate nonlinear optical loop mirror,all-optical regenerator,multilevel amplitude and phase noise suppression

    更新于2025-09-23 15:22:29

  • Low-frequency spectroscopy for quantum multilevel systems

    摘要: A periodically driven quantum system with avoided level crossing experiences both nonadiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the system’s occupation probabilities. For qubits, with repelling energy levels, such interference, named after Landau-Zener-Stückelberg-Majorana, displays arc-shaped resonance lines. In the case of a multilevel system with an avoided level crossing of the two lower levels, we demonstrate that the shape of the resonances can change from convex arcs to concave heart-shaped and harp-shaped resonance lines. Indeed, the whole energy spectrum determines the shape of such resonance fringes and this also provides insight into the slow-frequency system spectroscopy. As a particular example, we consider this for valley-orbit silicon quantum dots, which are important for the emerging field of valleytronics.

    关键词: valley-orbit silicon quantum dots,valleytronics,low-frequency spectroscopy,quantum multilevel systems,Landau-Zener-Stückelberg-Majorana interference

    更新于2025-09-23 15:21:21

  • A novel photovoltaic battery energy storage system based on modular multilevel converter

    摘要: Modular multilevel converters (MMCs) have been widely applied in photovoltaic battery energy storage systems (PV-BESSs). In this paper, a novel topology of PV-BESS based on MMC is proposed, where the batteries are connected to the sub-modules through DC-DC converters. It is necessary to analyze the control strategies of both DC-DC converters and MMC. Specifically, the capacitor voltage balancing and the modulation mode are important. The sorting method is proposed to balance the capacitor voltages in this paper. Moreover, carrier phase shift-square wave modulation with the highest voltage utilization ratio and the highest power transfer capability is proposed to generate PWM singles for MMC-PV-BESS. In order to verify the availability of the proposed control strategy, a simulation model is built and related experiments are carried out. The simulation results and experimental results are consistent with the theory. As a result, the voltages of all capacitors could be balanced, and the MMC-PV-BESS could reliably work.

    关键词: photovoltaic,modular multilevel converter,battery energy storage system,DC-DC converter,control strategy

    更新于2025-09-23 15:21:21

  • A hybrid output multiport converter for standalone loads and photovoltaic array integration

    摘要: Multiport converters (MPCs) are relatively recent power converter structures, which bestow the merits such as the omission of redundant power stages, centralized control, compact packaging, enhanced efficiency, improved reliability, and so on and have larger potential in domestic applications. They have the ability to amalgamate energy sources such as photovoltaic (PV) sources and battery storages, and can accommodate hybrid (ac and dc) domestic loads (bulbs, fans, induction stoves, and electric bike chargers). Hence, they can replace the conventional off-line uninterruptible power supplies, which are habitually used in domestic applications. The unique feature of MPCs is the ability to transfer the power between multiple sources and loads concurrently/independently. This article proposes cascaded sources switched tapping multi-level DC-link inverter (CSSTMLDCLI) involved hybrid loads MPC, which can integrate PV sources and feed above mentioned hybrid domestic loads. The involved novel seven level multilevel inverter structure, the CSSTMLDCLI has reduced component count to offer a high quality ac output, while the dc output is synthesized by a forward converter structure. The working principle of the CSSTMLDCLI along with the systematic design procedure is presented. The validity and effectiveness of the proposed converter are ratified through both MATLAB? Simulink R2016a simulation and the experimentation for a typical solar, battery, and grid supported domestic power backup. The system is managed for a lesser energy purchase using a developed minimal grid usage energy management system, which is implemented using ALTERA QUARTUS II 12.0SP2, field-programmable gate array processor.

    关键词: hybrid load MPC (HLMPC),photovoltaic (PV),cascaded sources switched tapping multilevel DC-link inverter (CSSTMLDCLI),multilevel inverters (MLI),pulse width modulation (PWM),multiport converters (MPC)

    更新于2025-09-23 15:21:01

  • [IEEE 2020 IEEE Texas Power and Energy Conference (TPEC) - College Station, TX, USA (2020.2.6-2020.2.7)] 2020 IEEE Texas Power and Energy Conference (TPEC) - A Simplified DC Capacitor Active Voltage-Balance Algorithm with Common-Mode Voltage Reduction using Active-Zero SVPWM for Three-Level Photovoltaic Grid-Tie Inverter Application

    摘要: This paper introduces a digitally controlled single-phase rectifier with power factor correction (PFC) based on a modified three-level boost converter topology. In comparison with the conventional boost-based systems, the new PFC rectifier has about three times smaller inductor and significantly lower switching losses. The improvements are achieved by replacing the output capacitor of the boost converter with a nonsymmetric active capacitive divider, with a 3:1 division ratio, and by utilizing the downstream converter stage for the capacitive divider’s center-tap voltage regulation. The nonsymmetric voltage divider and applied switching sequence effectively provide four-level converter behavior using the same number of components as three-level converters. As a result, a 66% reduction of the inductor compared to the conventional boost-based PFC and a 33% compared to the standard three-level solutions operating at the same effective switching frequencies are also achieved. Experimental results obtained with a 400 W, 200 kHz, universal input voltage (85 Vrms –265 Vrms) PFC prototype demonstrate three times smaller inductor current ripple than that of the conventional boost converter allowing for the same inductor reduction. Efficiency improvements of up to a 6% are also demonstrated.

    关键词: boost converter,power factor correction (PFC),multilevel converters,AC-DC converters

    更新于2025-09-23 15:21:01

  • [IEEE 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Xiamen, China (2019.12.17-2019.12.20)] 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Fast Solution of Volume-surface Integral Equations for Conducting-anisotropic Media

    摘要: Electromagnetic problems with both conducting and anisotropic media are formulated by volume-surface integral equations (VSIEs). The conducting medium is described by a surface integral equation while the anisotropic medium is governed by volume integral equations (VIEs) and they are coupled together via produced fields. The VSIEs are usually solved by the method of moments (MoM) in which the electric current density on the conductor surface is expanded by the Rao-Wilton-Glisson basis function while the volumetric flux densities inside the anisotropic medium are represented by the Schaubert-Wilton-Glisson basis function. In this work, we use a point-matching scheme to discretize the VIEs of dielectric part and couple it with the MoM for the conducting part. We also incorporate the hybrid scheme with the multilevel fast multipole algorithm to accelerate the solving process for electrically large problems. A numerical example is provided to illustrate the approach and good results have been obtained.

    关键词: multilevel fast multipole algorithm,Volume-surface integral equations,method of moments,conducting-anisotropic media

    更新于2025-09-23 15:21:01