- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Enhanced photoacoustic and photothermal effect of functionalized polypyrrole nanoparticles for near-infrared theranostic treatment of tumor
摘要: Functionalized nanomaterials with near-infrared (NIR) responsive capacity are quite promising for theranostic treatment of tumors, but formation of NIR responsive nanomaterials with enhanced theranostic ability and excellent biocompatibility is still very challenging. Herein, PEGylated indocyanine green (ICG)-loaded polypyrrole nanoparticles (PPI NPs) were designed and successfully formed through selecting polydopamine as the linkage between each component, demonstrating enhanced NIR responsive theranostic ability against tumor. Combining in vitro cell study with in vivo assay, the formed PPI NPs were proved being fantastic biocompatible while effectively internalizing in HeLa cells and retaining in HeLa tumor demonstrated by in vitro flow cytometry/confocal measurement and in vivo photoacoustic imaging assay. With the guidance of photoacoustic imaging, successful photothermal ablation of tumor was achieved when treating with PPI NPs plus laser, which was much more effective than the group treated with NPs free of ICG. The greatly combined enhanced photoacoustic and photothermal effect is mainly ascribed to the functionalized polypyrrole nanoparticles, which could accumulate in tumor site more effectively with a relative longer retention time taking advantage of the nanomaterial-induced endothelial leakiness phenomenon. All these results demonstrate the designed PPI NPs possess enhanced NIR responsive property are to hold a great promise for tumor NIR theranostic applications.
关键词: polypyrrole nanoparticles,photoacoustic imaging,photothermal therapy,Functionalized nanomaterials,near-infrared (NIR) responsive,theranostic treatment
更新于2025-09-23 15:21:21
-
Gambogic Acid Augments Black Phosphorus Quantum Dots (BPQDs)-Based Synergistic Chemo-Photothermal Therapy through Downregulating Heat Shock Protein Expression
摘要: In an attempt to attain synergistic therapeutic benefits and address various intrinsic limitations of the highly efficient black phosphorus quantum dots (BPQDs), we fabricated poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) triblock copolymer (PLLA-PEG-PLLA)-based nanocomposites co-loaded with BPQDs and gambogic acid (GA) using the supercritical carbon dioxide (SC-CO2) technology to achieve photoacoustic (PA) imaging-guided synergistic chemo-photothermal therapy. On the one hand, BPQDs displayed near-infrared (NIR)-induced hyperthermia through the high photothermal conversion efficiency. On the other hand, the NIR-responsive release of GA facilitated early apoptosis through specific binding to stress-induced overexpression of heat shock protein (HSP)-90 for combating thermoresistant tumor cells. GA significantly promoted the photothermal therapy (PTT) efficiency by enhancing both early and late apoptosis of BPQDs. Moreover, the encapsulation of BPQDs in the polymer significantly improved their chemical as well as photothermal stabilities. Our findings suggested that these nanocomposites fabricated using the eco-friendly supercritical fluid (SCF) technology provided good protection to the biodegradable BPQDs, offering a great potential towards cancer ablation through augmented synergistic effects.
关键词: Synergism,NIR-responsive,Black phosphorus,Heat shock protein,Photothermal therapy
更新于2025-09-19 17:13:59
-
Broadband Photocatalysts Enabled by 0D/2D Heterojunctions of Near-Infrared Quantum Dots/Graphitic Carbon Nitride Nanosheets
摘要: A heterojunction made of 0D near-infrared (NIR)-responsive PbS@CdS@ZnS core@shell@shell quantum dots (PCZ QDs) and 2D graphitic carbon nitride (g-C3N4) nanosheets was rationally constructed herein. In addition to some typical advantages of 0D/2D composites, such as short required charge-diffusion distance and high charge mobility, our designed PCZ QDs/g-C3N4 photocatalysts offer additional beneficial features. The broadband optical absorption of high-quality PCZ QDs highly dispersed on g-C3N4 nanosheets and their strong interaction yield efficient charge transfer between them and endow PCZ QDs/g-C3N4 with high photocatalytic activity from ultraviolet to NIR regions. With the optimized QDs loading levels, the achieved, normalized rate constant is higher than the best-reported value for NIR-driven photocatalysis. PCZ QDs/g-C3N4 possesses good recycling performance and no metal release was detected in the solution after photocatalysis. This work highlights the great potential of QDs/g-C3N4 0D/2D photocatalysts in realizing high-efficiency broadband photocatalysis and functional optoelectronic devices for full solar spectrum exploitation.
关键词: quantum dots,g-C3N4,NIR-responsive,charge transfer,broadband photocatalyst
更新于2025-09-19 17:13:59
-
Gold nanoroda??loaded (PLGA-PEG) nanocapsules as near-infrared controlled release model of anticancer therapeutics
摘要: Despite of high in vitro anticancer efficacy of many chemotherapeutics, their in vivo use is limited due to lack of biocompatibility and tumor targeting. Near-infrared (NIR) photothermally induced phase transition of PLGA-PEG regime was utilized for developing highly efficient photoresponsive drug delivery systems. Co-encapsulation of plasmonic gold nanorods (GNRs), as NIR-trigger, with the novel and highly efficient anticancer drug N′-(2-Methoxybenzylidene)-3-methyl-1-phenyl-H-Thieno[2,3-c]Pyrazole-5-Carbohyd-razide (MTPC) produced NIR-responsive biodegradable polymeric (PLGA-b-PEG) nanocapsules. This remotely controllable drug release significantly enhanced both biodistribution and pharmacokinetics of the hydrophobic drug. Intravenous (IV) injection of the prepared nanocapsules (MTPC/GNRs@PLGA-PEG) to tumor-bearing mice followed by extracorporeal exposure of the tumor to NIR light resulted in highly selective drug accumulation at the tumor sites. In vivo biodistribution and pharmacokinetics utilizing iodine-131 drug-radiolabelling technique revealed a maximum target to non-target ratio (T/NT) of 5.8, 4 h post-injection with maximum drug level in the tumor (6.3 ± 0.6% of the injected dose).
关键词: Pharmacokinetics,Biocompatible polymers,Radiolabelling,NIR-responsive nanocapsules,Biodistribution
更新于2025-09-16 10:30:52
-
pH/NIR-responsive semiconducting polymer nanoparticles for highly effective photoacoustic image guided chemo-photothermal synergistic therapy
摘要: Multifunctional drug delivery nanoplatform (PDPP3T@PSNiAA NPs) based on NIR absorbing semiconducting polymer nanoparticles for pH/NIR light-controllably regulated drug release has been successfully prepared. In this strategy, pH/thermal-sensitive multifunctional polymer polystyrene-b-poly(N-isopropylacrylamide-co-acrylic acid) (PSNiAA) was meticulously designed and synthesized using the reversible addition fragmentation chain transfer (RAFT) polymerization method. Furthermore, PSNiAA was first used to functionalize diketopyrrolopyrrole-based semiconducting polymer (PDPP3T) to combine photothermal capacity and pH/thermo-responsive drug release in one entity. The prepared PDPP3T@PSNiAA NPs exhibited high photothermal conversion e?ciency (η=34.1%) and excellent photoacoustic (PA) brightness. Meanwhile, benefiting from the photothermal effect of PDPP3T and the pH/thermal-responsive properties of PSNiAA, Dox-loaded PDPP3T@PSNiAA NPs (PDPP3T@PSNiAA-Dox NPs) were able to controllably regulate the release of Dox by pH/NIR light, in which the enhanced drug release at acidic condition upon NIR irradiation phenomenon would minimize unnecessary drug release in normal tissues and was highly beneficial for precise synergistic chemo- and photothermal therapy.
关键词: Photoacoustic image,Doxorubicin,Drug release,Chemo-photothermal therapy,pH/NIR-responsive,Semiconducting polymer
更新于2025-09-10 09:29:36