修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Luminescent switch of polysaccharide-peptide-quantum dot nanostructures for targeted-intracellular imaging of glioblastoma cells

    摘要: Glioblastoma multiforme (or GBM) remains one of the deadliest types of brain cancers. Nanomedicine can offer new strategies for fighting against GBM by combining the earliest possible diagnosis with multiple options of therapy. Hence, in this work, cysteine (Cys) and Poly-L-Arginine (PA) moieties were grafted to carboxymethyl cellulose (CMC) to produce biofunctional hybridized macromolecules (CMC_Cys and CMC_PA). These polymer-peptide conjugates were used simultaneously as surface capping ligands and biofunctional modifiers for the synthesis of ternary Ag-In-S (AIS) quantum dots (AIS QDs) via a green chemical process in aqueous medium and room temperature. These core-shell supramolecular nanostructures (AIS@CMC, AIS@CMC_Cys, and AIS@CMC_PA) were tested as fluorescent nanoprobes (“OFF-ON”) for targeted bioimaging and in vitro intracellular tracking of glioblastoma cells (GBM, U-87 MG). The nanosystems were characterized for physicochemical, structural, and morphological properties by NMR, UV–Vis, PL, FTIR, TEM/EDX/SAED, zeta potential, and DLS. Cytocompatibility was evaluated by mitochondrial activity assay, and confocal laser scanning microscopy was performed for investigating the kinetics of cellular uptake. The grafting caused a noticeable reduction of surface charges, associated with a drastic photoluminescence quenching (i.e., “OFF-state”) of AIS@CMC_Cys and AIS@CMC_PA compared to unmodified AIS@CMC. This effect was smartly applied for bioimaging GBM cells and for monitoring the internalization process by intracellular tracking, which underwent strong “de-quenching” at very early incubation times (~5 min). Thus, these novel hybrid nanocolloids produced via eco-friendly scalable aqueous process show potential as responsive fluorescent bioprobes for bioimaging and tracking intracellular pathways and mechanisms as a powerful weapon for fighting against brain cancer cells.

    关键词: nanoconjugates,nanomaterials,colloids,polymer-semiconductor nanoprobes,supramolecular nanoparticles,fluorescent nanoparticles

    更新于2025-09-23 15:19:57

  • Green synthesis of ZnS quantum dot/biopolymer photoluminescent nanoprobes for bioimaging brain cancer cells

    摘要: Semiconductor quantum dots (QDs) are one of the most interesting photoluminescent nanomaterials with very promising applications in cancer nanomedicine. In this work, ZnS fluorescent quantum dots (ZnS-QDs) were synthesized and stabilized by carboxymethylcellulose (CMC) as a pH-sensitive biopolymer using a facile one-step green aqueous colloidal process at distinct pH conditions (acidic, neutral and alkaline) and chemical proportions of precursors (Zn2+ and S2?). The optical properties of these nanoconjugates (ZnS@CMC) were characterized by UV–visible and photoluminescence spectroscopy. The morphological features and physicochemical properties were evaluated by TEM, FTIR spectroscopy, zeta potential, and dynamic light scattering (DLS) analyses. The cytocompatibility in vitro of ZnS@CMC was assessed by MTT assay using normal and malignant glioma cells. The UV–Vis results indicated that ZnS-QDs were effectively produced with different bandgap energies (from 4.5 to 3.8 eV) blue-shifted from bulk (Ebulk = 3.61 eV), and sizes (typically from 3.3 to 4.5 nm), dependent on the pH and concentration ratio of precursors during the synthesis. Analogously, the changes of synthesis parameters significantly altered the photoluminescence emission energies and intensities within the visible range of spectra (PL maxima from λ = 400–430 nm, at pH = 3.5, [Zn:S] ratio = 1:2). The cell viability results in vitro (>90%) demonstrated no cytotoxicity of ZnS@CMC nanohybrids towards both cell types. Importantly, these ZnS@CMC nanoconjugates behaved as active fluorescent nanoprobes for bioimaging malignant glioma cells proving the high potential for applications in cancer nanomedicine.

    关键词: Fluorescent nanoprobes,Luminescent nanomaterials,ZnS quantum dots,Cancer bioimaging,Green nanotechnology,Luminescent nanoconjugates

    更新于2025-09-19 17:13:59

  • Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro

    摘要: Glioblastoma (GBM) is the utmost aggressive and lethal primary brain cancer, which has a poor prognosis and remains virtually incurable. Nanomedicine with emerging disruptive nanotechnology alternatives, including designed supramolecular nanohybrids has excellent potential as multimodal tools against cancer by combining nanomaterials, biomacromolecules, and drugs. Thus, we developed and constructed for the first time quantum dot-biopolymer-drug nanohybrids based on host-guest chemistry for simultaneous bioimaging, targeting, and anti-cancer drug delivery against GBM cells in vitro. ZnS fluorescent quantum dots (ZnS-QDs) were produced using chemically modified polysaccharide, carboxymethylcellulose (CMC), as water-soluble capping ligand and biofunctional layer via a facile one-step eco-friendly aqueous colloidal process at room temperature and physiological pH. These hybrid inorganic-organic nanocolloids (ZnS@CMC) were electrostatically conjugated with doxorubicin (DOX) anti-cancer drug forming innovative supramolecular complexes (ZnS@CMC-DOX) for amalgamating bioimaging and killing cancer cells. These nanoconjugates were characterized regarding their optical and physicochemical properties combined with morphological and structural features. The cytocompatibility was evaluated by MTT assay using healthy and GBM cells. The results showed that ultra-small ZnS-QDs were expertly produced uniform nanocolloids (average size = 3.6 nm). They demonstrated photoluminescence emission within the visible range of spectra. The cell viability results in vitro showed no cytotoxicity of ZnS@CMC nanohybrids towards both cell types. In summary, the novelty of this research relies on using a nanotheranostic strategy for developing ZnS@CMC-DOX nanohybrids with supramolecular vesicle-like structures. They behaved simultaneously as active fluorescent nanoprobes and nanocarriers with modulated drug release for bioimaging and killing malignant glioma cells proving the high potential for applications in cancer nanomedicine.

    关键词: Nanocarriers,Cancer nanotheranostic,Nanocolloids,Nanoconjugates,Fluorescent nanoparticles,Nanomedicine,Nanohybrids,Nanoparticles

    更新于2025-09-12 10:27:22