修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

168 条数据
?? 中文(中国)
  • Uniform Sb <sub/>2</sub> S <sub/>3</sub> optical coatings by chemical spray method

    摘要: Antimony sulfide (Sb2S3), an environmentally benign material, has been prepared by various deposition methods for use as a solar absorber due to its direct band gap of ≈1.7 eV and high absorption coefficient in the visible light spectrum (1.8 × 105 cm?1 at 450 nm). Rapid, scalable, economically viable and controllable in-air growth of continuous, uniform, polycrystalline Sb2S3 absorber layers has not yet been accomplished. This could be achieved with chemical spray pyrolysis, a robust chemical method for deposition of thin films. We applied a two-stage process to produce continuous Sb2S3 optical coatings with uniform thickness. First, amorphous Sb2S3 layers, likely forming by 3D Volmer–Weber island growth through a molten phase reaction between SbCl3 and SC(NH2)2, were deposited in air on a glass/ITO/TiO2 substrate by ultrasonic spraying of methanolic Sb/S 1:3 molar ratio solution at 200–210 °C. Second, we produced polycrystalline uniform films of Sb2S3 (Eg 1.8 eV) with a post-deposition thermal treatment of amorphous Sb2S3 layers in vacuum at 170 °C, <4 × 10?6 Torr for 5 minutes. The effects of the deposition temperature, the precursor molar ratio and the thermal treatment temperature on the Sb2S3 layers were investigated using Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and UV–vis–NIR spectroscopy. We demonstrated that Sb2S3 optical coatings with controllable structure, morphology and optical properties can be deposited by ultrasonic spray pyrolysis in air by tuning of the deposition temperature, the Sb/S precursor molar ratio in the spray solution, and the post-deposition treatment temperature.

    关键词: vacuum annealing,Volmer–Weber growth,antimony sulfide,thin films,ultrasonic spray

    更新于2025-09-23 15:22:29

  • AIP Conference Proceedings [Author(s) PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2017 (ISCPMS2017) - Bali, Indonesia (26–27 July 2017)] - Bismuth vanadate (BiVO4) as counter electrode in the newly developed catalysis zone of modified cadmium sulfide (CdS) sensitized solar cell for hydrogen production

    摘要: Recently we developed a modified quantum dot dyes sensitized solar cell (QD-DSSC) having catalysis zone extension for hydrogen production. The DSSC section comprised of CdS sensitized highly order Titanium dioxidenanotube (CdS-HOTN) immobilized on Ti plate, Na2S/S containing electrolyte, and Pt covered SnO-F (fluorine doped tin oxide) glass plate (hence Pt/SnO-F/Glass). While the catalysis zone comprised of an extension of Ti support, as cathode, and the respected counter electrode was an extension of SnO-F glass, which was covered by BiVO4 film, both from respected DSSC section. In this presentation, we will focus on the role of the BiVO4 in our newly developed system. The bismuth vanadate was prepared by co-precipitation method with ammonia and calcination to obtain a fine powder. The BiVO4 fine powder were then deposited onto SnO-F glass plate and characterized by FT-IR, UV–vis diffused reflectance spectroscopy, SEM and X-ray diffraction. The characterization results revealed that the BiVO4 film, typically, has a band gap of 2.35 eV, characteristic of IR peaks represent the –V-O-, and –Bi-O-V- bonds, having a crystal phase as BiVO4 monoclinic scheelite with a typically crystallite size of 74.06 nm. The photo-electro-chemical properties of the BiVO4 film photo-anode was investigated by a linear sweep voltammetry and multi pulse amperometry, which revealed that the current response under the visible light was 0.03 mA/cm2. Further investigation when the BiVO4 film was incorporated into the modified QD-DSSC, the system (catalysis zone section), under solely visible light, was able to split the water into hydrogen and molecular oxygen. A brief discussion of the newly developed modified QD-DSSC, especially on the role of BiVO4 counter electrode in the catalysis zone will be presented, to gain a better insight in our new type artificial photosynthesis.

    关键词: water splitting,titanium dioxide nanotubes,cadmium sulfide,artificial photosynthesis,modified dyes sensitized solar cell,Bismuth vanadate

    更新于2025-09-23 15:21:21

  • Integrin α <sub/>γ</sub> β <sub/>3</sub> -targeted [ <sup>64</sup> Cu]CuS Nanoparticles for PET/CT Imaging and Photothermal Ablation Therapy

    摘要: Copper sulfide (CuS) nanoparticles have been considered one of the most clinical relevant nanosystems because of their straightforward chemistry, small particle size, low toxicity, and intrinsic theranostic characteristics. In our previous studies, radioactive [64Cu]CuS nanoparticles were successfully developed to be used as efficient radiotracers for positron emission tomography and for photothermal ablation therapy of cancer cells using near-infrared laser irradiation. However, the major challenge of CuS nanoparticles as a theranostic platform is the lack of a means for effective targeted delivery to the tumor site. To overcome this challenge, we designed and synthesized angiogenesis-targeting [64Cu]CuS nanoparticles, which are coupled with cyclic RGDfK peptide [c(RGDfK)] through polyethylene glycol (PEG) linkers using click chemistry. In assessing their tumor-targeting efficacy, we found that the tumor uptakes of [64Cu]CuS-PEG-c(RGDfK) nanoparticles at 24 h after intravenous injection were significantly greater (8.6%±1.4% injected dose/gram of tissue) than those of nontargeted [64Cu]CuS-PEG nanoparticles (4.3%±1.2% injected dose/gram of tissue, p < 0.05). Irradiation of tumors in mice administered [64Cu]CuS-PEG-c(RGDfK) nanoparticles induced 98.7% necrotic areas. In contrast, irradiation of tumors in mice administered non-targeted CuS-PEG nanoparticles induced 59% necrotic areas (p < 0.05). The angiogenesis-targeting [64Cu]CuS nanoparticles may serve as a promising platform for image-guided ablation therapy with high efficacy and minimal side effects in future clinical translation of this novel class of multifunctional nanomaterials.

    关键词: PET/CT imaging,RGD peptide,Copper sulfide nanoparticles,photothermal ablation therapy,integrin αvβ3,theranostics

    更新于2025-09-23 15:21:21

  • Bi-Exciton Dissociation Dynamics in Nano-Hybrid Au-CuInS <sub/>2</sub> Nanocrystals

    摘要: Multiexciton harvesting from semiconductor quantum dot has been a new approach for improving the solar cell efficiency in Quantum Dot Sensitized Solar Cells (QDSC). Till date, relation between multiexciton dissociation in metal?semiconductor nanohybrid system and boosting the power conversion efficiency (PCE) of QDSC were never discussed. Herein we report a detailed spectroscopic investigation of biexciton dissociation dynamics in copper indium sulfide (CuInS2, also referred as CIS) and Au-CIS nanohybrid, utilizing both time-resolved PL and ultrafast transient absorption (TA) techniques. Ultrafast transient absorption suggests the formation of bi-exciton in CIS NCs which efficiently dissociates in Au-CIS nanohybrids. Maximum multiexciton dissociation (MED) efficiency is determined to be ~ 80% at higher laser fluency, however it was observed to be 100% at lower laser fluency. Prior to exciton dissociation electrons are captured by Au NP in the nanohybrid from the conduction band of CIS NCs which is energetically higher than Fermi level of Au. Here we demonstrate the proof-of-concept in multi-electron dissociation which may provide a new approach for improving the efficiency in QDSSCs, where we found power conversion efficiency (PCE) of Au-CIS nanohybrids up to 2.49% as compared to ~1.06% ~for pure CIS NCs in similar condition. This finding can be an efficient approach towards the design and development of efficient solar cell and optoelectronic devices using the principles of multiexciton generation and extracting multiexcitons in metal-semiconductor nanohybrid system.

    关键词: copper indium sulfide,biexciton dissociation dynamics,Quantum Dot Sensitized Solar Cells,power conversion efficiency,ultrafast transient absorption,Multiexciton harvesting,Au-CIS nanohybrid

    更新于2025-09-23 15:21:21

  • Effect of PbS quantum dot-doped polysulfide nanofiber gel polymer electrolyte on efficiency enhancement in CdS quantum dot-sensitized TiO2 solar cells

    摘要: Quantum dot-sensitized solar cells (QDSSCs) are among the most promising low cost third generation solar cells. Semiconductor quantum dots have unique properties such as high molar extinction coefficients, tunable energy gap by the quantum confinement effect and the ability of multiple exciton generation. In this study, stable CdS QDSSCs were fabricated by using polysulfide liquid electrolytes and also by using cellulose acetate nanofiber-based gel electrolytes. Incorporation of PbS Q dots to the liquid or gel electrolyte showed a significant enhancement in solar cell efficiency. Under the simulated light of 100 mW cm-1 the efficiency of the polysulfide liquid electrolyte based CdS QD solar cells increased from 1.19% to 1.51% and the efficiency of the nanofibre gel electrolyte based CdS QD solar cells increased from 0.94 % to 1.46% due to the incorporation of 5% (wt/wt) PbS Q dots into the respective electrolytes. The efficiency increase has been attributed to the increase in short circuit photocurrent density due to increased sulfide ion (S2-) conductivity evidently caused by indirect ionic dissociation facilitated by PbS QDs.

    关键词: Sulfide ion conductivity,Nanofibre gel electrolyte,Efficiency enhancement,Quantum dot sensitized solar cells,Quantum dot doped electrolyte

    更新于2025-09-23 15:21:01

  • Improved Performance of Thermally Evaporated Sb2Se3 Thin-Film Solar Cells via Substrate-Cooling-Speed Control and Hydrogen-Sulfide Treatment

    摘要: Antimony selenide is a promising abundant absorber material for solar cells. However, current Sb2Se3 photovoltaic devices, which are fabricated via thermal evaporation, tend to have stoichiometric problems and show suboptimal performance. In this paper, we use a modified thermal evaporator to fabricate high-quality Sb2Se3 films. By dedicatedly cooling the substrate, we can improve both the Sb2Se3 morphology and the Sb2Se3/CdS heterojunction interface substantially. We find a suitable annealing atmosphere, H2S, which can largely compensate for possible deficiencies of Se and remove the antimony-oxide layer on the film surface. Thanks to cooling control and H2S treatment, we obtain a significantly improved efficiency (6.24%) for the Sb2Se3 solar cells. Our results indicate that this thermal evaporation technique is a promising approach to improve the large-scale fabrication of antimony chalcogenide solar cells.

    关键词: Thermal evaporation,Sb2Se3,Hydrogen-sulfide,Large-scale,Post-annealing process

    更新于2025-09-23 15:21:01

  • Adsorption and Cation Exchange Behavior of Zinc Sulfide (ZnS) on Mesoporous TiO2 Film and Its Applications to Solar Cells

    摘要: Zinc sulfide (ZnS) was deposited onto the surface of mesoporous TiO2 film by a typical successive ionic layer adsorption and reaction (SILAR) process. By inducing a spontaneous cation exchange between ZnS and a target cation (Pb2+, Cu2+, Ag+, or Bi3+) dissolved in chemical bath when they are in contact, it was demonstrated successfully that white translucent ZnS on the substrate could be changed to brown-colored new metal chalcogenides and the amount of ZnS deposited originally by different conditions could be compared in a qualitative way with the degree of the color change. By utilizing this simple but effective process, the evolution of well-known ZnS passivation layer prepared from different chemical baths in quantum dot (QD)-sensitized solar cells could be tracked visually via checking the degree of color change of TiO2/ZnS electrodes after the induced specific cation exchange. When applied to representative CdS QD-sensitized solar cells, it was revealed clearly how the different degree and rate of ZnS deposition could affect the overall power conversion efficiency while finding an optimized passivation layer over TiO2/CdS electrode. Acetate anion-coupled Zn2+ source was observed to give a much faster deposition of ZnS passivation layer than nitrate anion one due to its higher pH-induced more favorable adsorption of Zn2+ on the surface of TiO2. As another useful application of the ZnS-based cation exchange, as-deposited ZnS was used as a template for preparing a more complex metal chalcogenide onto mesoporous TiO2 film. The ZnS-derived Sb2S3-sensitized electrode showed a promising initial result of over 1.0 % overall power conversion efficiency with a very thin ZrO2 passivation layer between TiO2 and Sb2S3.

    关键词: passivation,Quantum dot-sensitizer,SILAR deposition,zinc sulfide,solar cell,cation exchange

    更新于2025-09-23 15:21:01

  • Hydrogen Sulfide Gas Sensor Based on Titanium Dioxide/Amino-Functionalized Graphene Quantum Dots Coated Photonic Crystal Fiber

    摘要: A novel photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) was proposed for detecting hydrogen sulfide (H2S) gas. Two single-mode fibers (SMFs), two multi-mode fibers (MMFs), and a PCF are sequentially fused to form a MZI with SMF-MMF-PCF-MMF-SMF structure. Titanium dioxide/amino-functionalized graphene quantum dots (TiO2/af-GQDs) composite is coated on the surface of PCF as sensing membrane. The fabricated sensing membrane is characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, the properties of the sensor are examined. The results show that a uniform TiO2/af-GQDs film with a thickness of 1 μm is successfully coated on the surface of the PCF. The sensor has a sensitivity of 26.62 pm/ppm, showing a good linearity and selectivity for H2S in the range of 0~55 ppm. The response time and recovery time are about 68 s and 77 s, respectively. The sensor has the advantages of low cost, small volume and simple structure, which is suitable for on-line monitoring of H2S.

    关键词: Mach-Zehnder interference,Graphene quantum dots,Titanium dioxide,Fiber-optic sensing,Hydrogen sulfide

    更新于2025-09-23 15:21:01

  • Excitation Transfer in Hybrid Nanostructures of Colloidal Ag2S/TGA Quantum Dots and Indocyanine Green J-Aggregates

    摘要: The regularities of the electron excitations exchange in hybrid associates of colloidal Ag2S quantum dots, passivated with thioglycolic acid (Ag2S/TGA QDs) with an average size of 2.2 and 3.7 nm with Indocyanine Green J-aggregates (ICG) were studied in this work by methods of absorption and luminescence spectroscopy. It was shown that IR luminescence sensitization of Ag2S/TGA QDs with an average size of 3.7 nm in the region of 1040 nm is possible due to non-radiative resonance energy transfer from Ag2S/TGA QDs with an average size of 2.2 nm and luminescence peak at 900 nm using ICG J-aggregate as an exciton bridge. The sensitization efficiency is 0.33. This technique provides a transition from the first therapeutic window (NIR-I, 700-950 nm) to the second (NIR-II, 1000-1700 nm). It can allow high to increase the imaging in vivo resolution.

    关键词: Non-radiative resonance energy transfer (FRET),Indocyanine green,Hybrid associate,Luminescence properties,Silver sulfide quantum dots,J-aggregates

    更新于2025-09-23 15:21:01

  • [IEEE 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) - Vancouver, BC, Canada (2020.1.18-2020.1.22)] 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) - Graphene Quantum Dots Induced NiCo <sub/>2</sub> S <sub/>4</sub> as an Efficient Electrocatalyst for Hydrogen Harvest

    摘要: We made an efficient electrocatalyst for hydrogen harvest, with an overpotential as low as 0.131V to achieve a current density of 10 mA/cm2. The morphology of the material was extremely delicate: branches on the nanowire, and smaller twigs on the branches, such that the specific surface area was greatly enlarged. The two-step hydrothermal process improved performance of is easily accessible. The GQD/NiCo2S4 should mainly be ascribed to graphene quantum dots (GQDs), which induce morphology change of NiCo2S4 nanowires. The delicate morphology serves as a buffer for volume change, and also a reservoir for electrolytes to transport protons [1]. In the meaning time, GQDs inherit excellent properties from both graphene and quantum dots, improving conductivity. Moreover, the addition of GQDs creates numerous defects in both the basal and edge planes for the diffusion of protons and thus help overcome the sluggish redox kinetics of the electrode, leading to improved overall performances [2].

    关键词: Hydrogen harvest,Nickel-Cobalt sulfide (NiCo2S4),Electrocatalyst,Graphene Quantum Dots (GQD)

    更新于2025-09-23 15:21:01