- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ultrafast synthesis of gold nanosphere cluster coated by graphene quantum dot for active targeting PA/CT imaging and near-infrared laser/pH-triggered chemo-photothermal synergistic tumor therapy
摘要: In this work, simple raw materials and reaction conditions were used to synthesize a versatile nanoprobe using a one-step method. Graphene quantum dot (GQD) and gold chloride were mixed and irradiated with ultra-violet (UV) radiation for 1 min. Then, the gold nanosphere cluster with the diameter of 50 nm and coated using GQD was formed using a facile one-step approach. GQD played the roles of reducing agent, stabilizer and drug carrier instead of a harmful reducing agent or stabilizer. The nanoprobe had good dispersion, stability, excellent photoacoustic imaging (PAI) and computed tomography (CT) imaging performance, low cytotoxicity and photothermal conversion e?ciency of up to 51.31%. The results for cell and animal experiments showed that targeted PAI/CT imaging of tumor after modi?cation of folic acid (FA) could be obtained using the probe. Meanwhile, after the adsorption of doxorubicin, the chemo-photothermal combined therapy for tumor could be carried out through controlled drug release from GQD under heated and acidic environment of tumor. Additionally, the treatment e?ect was signi?cantly superior to single modes. The body weight, Hematoxylin and Eeosin (H&E) staining of main organs and blood biochemical indicators showed that the probe had good biological safety after injection. The current work proposes a new dual-mode bio-imaging and chemo-photothermal combined therapy nanoprobe, which presents good application prospect for tumor theragnostic.
关键词: CT imaging,One-step synthesis,Drug release,Photoacoustic imaging,Chemo-photothermal therapy
更新于2025-11-25 10:30:42
-
A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution
摘要: Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets, as the promising photocatalyst with fascinating properties, have become a 'rising star' in the field of photocatalysis. Although g-C3N4 nanosheets exfoliated from the bulk g-C3N4 powders are extensively emerged, developing a simple synthetic approach is still full of challenge. To this end, here we report a direct polymerization strategy to fabricate the ultrathin g-C3N4 nanosheets, that is only heating treatment of thiourea in air without addition of any template. The photocatalytic activities of as-prepared samples were evaluated by photoreduction of water to hydrogen (H2) using triethanolamine as sacrificial agent and Pt as co-catalyst under visible-light irradiation (λ > 420 nm). As a result, our few-layered g-C3N4 nanosheets with an average thickness of 3.5 nm exhibit a superior visible-light photocatalytic H2 evolution rate (HER) of 1391 μmol g?1 h?1 and a remarkable apparent quantum efficiency of 6.6% at 420 nm. Eventually, the HER of as-fabricated ultrathin g-C3N4 nanosheets is not only much higher than the dicyandiamide-derived g-C3N4 or melamine-derived g-C3N4, but also greater than the thermal-oxidation etched g-C3N4 nanosheets under the same condition.
关键词: g-C3N4 nanosheets,Template-free polymerization,Solar energy conversion,2D materials,Photocatalysis,One-step synthesis
更新于2025-11-14 17:03:37
-
One-step preparation of Bi4O5BrxI2?x solid solution with superior photocatalytic performance for organic pollutants degradation under visible light
摘要: Highly e?cient photocatalyst is the demand for controlling environmental pollution, especially the toxic and refractory organic contaminants. Herein, a series of bismuth-rich Bi4O5BrxI2?x solid solution photocatalysts were prepared through a one-step solvothermal method by adjusting the molar ratio of Br/I, which can e?ectively degrade organic pollutants of phenol and Rhodamine B (RhB). The structure and morphology of the photocatalysts were characterized by X-ray di?raction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM). The results indicated that Bi4O5BrxI2?x solid solution photocatalysts were successfully synthesized. The obtained samples showed superior photocatalytic activities toward phenol and RhB under visible light irradiation. Besides, the photocatalytic performances can be optimized by changing the ratio of Br/I. When the ratio of Br/I was 1:1, the obtained Bi4O5BrxI2?x solid solution exhibited the highest photocatalytic performance, which was nearly 6.4 and 8.5 times higher than that of pure Bi4O5Br2 and Bi4O5I2 for phenol degradation, respectively. The enhancement can be ascribed to the high e?cient separation of photogenerated electron-hole pairs in Bi4O5BrxI2?x solid solution, which was con?rmed by the corresponding optical and photoelectrochemical characterizations.
关键词: One-step synthesis,Photocatalytic,Bi4O5BrxI2?x solid solution,Bismuth-rich
更新于2025-09-23 15:23:52
-
Self-Floating Carbonized Tissue Membrane Derived from Commercial Facial Tissue for Highly Efficient Solar Steam Generation
摘要: Solar steam generation holds a great promise for practically utilizing solar energy in sea water desalination and sewage purification on a large scale. It has been proven that local heating of the superficial water can maximize the energy efficiency for steam generation. So the photothermal materials are required to float on water while working. However, the fabrication of a photothermal material with self-floating ability, low cost and easy-preparation for solar steam generation is highly challenged. Herein, self-floating carbonized tissue membrane for high efficiency solar steam generation is prepared via the carbonization of the commercial facial tissue. The low-cost and scalable carbonized tissue membrane can float on water without any assistance, and can effectively generate water steam at the rate of 4.45 kg m-2 h-1 with photothermal conversion efficiency of as high as 95 % under 3-sun illumination. The self-floating ability, high solar steam generation performance and low cost make the carbonized tissue membrane to be potential alternative for practical application in the future.
关键词: Self-floating,Membrane,One-step synthesis,Carbon material,Solar steam generation
更新于2025-09-23 15:22:29
-
One-Step Synthesis of Ag@TiO2 Nanoparticles for Enhanced Photocatalytic Performance
摘要: Polyamide network polymers (PNP) modi?ed TiO2 nanoparticles (NPs) were decorated with Ag NPs in hydrothermal gel method, forming one-step synthesized photocatalysts, Ag@TiO2 NPs. The effect of PNP and the amount of Ag NPs added were investigated in this work. PNP acted as a nanocage to prevent TiO2 aggregation and capture Ag accurately, which could effectively control product sizes and improve dispersibility in solvents. Simultaneously, TiO2 NPs modi?ed with Ag NPs exhibited remarkable photocatalytic effects. One-step synthesis simpli?ed the experimental process and avoided the agglomeration of silver ions during the secondary reaction, achieving the purpose of uniform distribution at a speci?c location of TiO2 NPs. The prepared Ag@TiO2 NPs-0.5 could remove 79.49% of Methyl Orange (MO) after 3 h of ultraviolet light irradiation, which was 2.7 times higher than the reaction rate of pure TiO2 NPs. It also exhibited good photoactivity under Visible light conditions. Moreover, the mineralization rate of MO over the Ag@TiO2 NPs-0.5 could be up to 72.32% under UV light and 47.08% under Visible light irradiation, which revealed that the prepared catalysts could effectively degrade most of the MO to CO2 and H2O. The samples also demonstrated the excellent stability and easy recyclability with over 90% of the original catalytic level for MO degradation. The photocatalysts studied also exerted broad application prospects such as photovoltaic hydrogen production, electronic sensors and biomedicine.
关键词: Ag@TiO2 NPs composite,MO removal,one-step synthesis,photocatalytic
更新于2025-09-19 17:15:36
-
Preparation and growth mechanism of CdS quantum dots in octadecene/glycerol two-phase systems
摘要: Two-phase synthesis is an advantageous alternative to the traditional synthetic method, due to its less toxicity, controllable, mild synthetic conditions and easy large-scale synthesis. However, meeting novel synthesis, the conventional trial-and-error approach could not provide a clear understanding. We herein report synthesis and mechanism investigation of CdS quantum dots in octadecene/glycerol two-phase system. The effects of different reaction parameters and conditions including reaction temperature, reaction time, reactant concentrations, and synthesis routes (one-step and two-step approach) on both nucleation and particle growth were investigated. It was found that the synthesis course was a growth dominated process depending on both CdS(monomer) and CdS (nuclei), and controlled by the interface of ODE/glycerol. The present work provided a new and clear understanding about two-phase system synthesis on semiconductor quantum dots, noble metal nanocrystals and some alloy nanomaterials.
关键词: Octadecene/glycerol two-phase systems,Growth mechanism,CdS quantum dots,One-step synthesis
更新于2025-09-16 10:30:52