- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- IoT
- Organic photovoltaic
- Sensors
- UHF RFID Tags
- Energy Harvesting
- organic light emitting diodes
- conjugated polymer
- polarized emission
- chiral dopant
- Circular polarization
- Optoelectronic Information Science and Engineering
- Optoelectronic Information Materials and Devices
- Hanyang University
- Univ. Grenoble Alpes, Grenoble INP
- Dracula Technologies
-
Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores
摘要: The design and synthesis of sensitive and selective luminescent materials as chemical sensing agents is a fundamental goal in fluorescence assays. Considering high porosity, large surface area, excellent photoluminescence property of metal-organic frameworks (MOFs), luminescent properties of a microporous azine-functionalized MOF, TMU-16, dispersed in different metal ions and solvents have been investigated systematically. The TMU-16 displays superb luminescence emission, and it can detect Fe(III) and Cd(II) ions with high selectivity, excellent sensitivity, and short response time (<1 min). The emission intensities of TMU-16 were quenched upon the addition of Fe3+ and increased upon the addition of Cd2+. The detection limits of TMU-16 for Fe3+/Cd2+ in DMF are estimated to be 0.2 and 0.5 μM, respectively. The effect of other metal ions on the fluorescence intensity of the MOF was also studied and other metal ions showed low interference response in recognition of Fe3+ and Cd2+. Furthermore, TMU-16 exhibits distinct solvent-dependent luminescent spectra with emission intensity significantly enhanced toward dichloromethane. More importantly, this is the first example of MOF-based luminescent sensor as efficient multifunctional fluorescence material which can use for selective sensing of Fe(III) and Cd(II) ions and small molecules such as CH2Cl2.
关键词: Small molecules,Metal ions,Luminescent,Sensing,Metal-organic frameworks,Detection
更新于2025-11-19 16:46:39
-
Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics
摘要: The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability. With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices. On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight. In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform. Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices). In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture. One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions. In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.
关键词: inkjet technology,flexible electronics,organic photovoltaics,Indium Tin Oxide (ITO) free solar cells
更新于2025-11-14 17:28:48
-
Admittance of Organic LED Structures with an Emission YAK-203 Layer
摘要: The current-voltage characteristics and admittance of multilayer structures for organic LEDs based on the PEDOT:PSS/NPD/YAK-203/BCP system have been experimentally investigated in a wide range of the measurement conditions. It is shown that at voltages corresponding to the effective radiative recombination of charge carriers, a significant decrease in the differential capacitance of the structures is observed. The frequency dependences of the normalized conductance of LED structures are in good agreement with the results of numerical simulation in the framework of the equivalent circuit method. Changes in the frequency dependences of the admittance with a change in temperature are most pronounced in the temperature range of 200–300 K and less noticeable in the temperature range of 8–200 K. From the frequency dependences of the imaginary part of impedance, the charge carrier mobilities are found at various voltages and temperatures. The mobility values obtained by this method are somewhat lower than those determined by the transient electroluminescence method. The dependence of the mobility on the electric field is well approximated by a linear function. As the temperature decreases from 300 to 220 K, the mobility decreases several times.
关键词: frequency dependence of imaginary part of impedance,LED structure,current-voltage characteristic,transient electroluminescence,organic semiconductor,charge carrier mobility,method of equivalent circuits,admittance
更新于2025-11-14 17:28:48
-
Reorientational dynamics of organic cations in perovskite-like coordination polymers
摘要: Here we report the dynamics of organic cations as guest molecules in a perovskite host-framework. The molecular motion of CH3NH3+ (MAFe), (CH3)2NH2+ (DMAFe) and (CH3)3NH+ (TrMAFe) in the cage formed by KFe(CN)63? units was studied using a combination of experimental methods: (i) thermal analysis, (ii) dielectric and electric studies, (iii) optical observations, (iv) EPR and 1H NMR spectroscopy and (v) quasielastic neutron scattering (QENS). In the case of MAFe and TrMAFe, the thermal analysis reveals one solid-to-solid phase transition (PT) and two PTs for the DMAFe crystal. A markedly temperature-dependent dielectric constant indicates the tunable and switchable properties of the complexes. Also, their semiconducting properties are confirmed by a dc conductivity measurement. The broadband dielectric relaxation is analyzed for the TrMAFe sample in the frequency range of 100 Hz–1 GHz. QENS shows that we deal rather with the localized motion of the cation than a diffusive one. Three models, which concern the simultaneous rotation of the CH3 and/or NH3 group, π-flips and free rotations of the organic cation, are used to fit the elastic incoherent structure factor. The 1H NMR spin–lattice relaxation time for all compounds under study, as well as the second moments, has been measured in a wide temperature range. In all studied samples, the temperature dependence of the second moment of the proton NMR line indicated the gradual evolution of the molecular movements from the rigid state up to a highly disordered one.
关键词: quasielastic neutron scattering,phase transitions,perovskite,coordination polymers,dielectric properties,NMR spectroscopy,dynamics,organic cations
更新于2025-11-14 17:28:48
-
Highly Stretchable, High‐Mobility, Free‐Standing All‐Organic Transistors Modulated by Solid‐State Elastomer Electrolytes
摘要: Highly stretchable, high-mobility, and free-standing coplanar-type all-organic transistors based on deformable solid-state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i-TPU), thereby showing high reliability under mechanical stimuli as well as low-voltage operation. Unlike conventional ionic dielectrics, the i-TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 μF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i-TPU-based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low-voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on-current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free-standing, fully stretchable, and semi-transparent coplanar-type all-organic transistors can be fabricated by introducing a poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low-voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.
关键词: free-standing all-organic transistors,stretchable and conformal electronics,high-mobility,elastomer electrolyte,low-voltage operation
更新于2025-11-14 17:28:48
-
Pyrene-SH functionalized OTFT for detection of Hg2+ ions in aquatic environments
摘要: Mercury ion (Hg2+) sensor based on bottom gate top contact organic thin film transistor (OTFT) was fabricated. The OTFT channel area was functionalized with pyrene that contain thiol group, which has strong binding affinity toward Hg2+ ion. The OTFT sensor exhibited a charge mobility of 0.28 cm2 V–1 s–1, a threshold voltage of -22.3 V and on-to-off ratio 103. The sensor shows high selectivity to Hg2+ ion over other two valence metal ions. OTFT sensor exhibited high sensitivity to Hg2+ ion, indicated by increasing of drain current after exposed to different concentration of Hg2+ ion ranging from 1 mM to 0.01 μM. Moreover, the OTFT sensor capability for practical application was also demonstrated by sensing the present of 25 μM of Hg2+ ion in tap, drinking and seawater samples.
关键词: Mercury sensor,Pyrene derivative,Organic thin film transistor
更新于2025-11-14 17:28:48
-
A gadolinium(III)-porphyrin based coordination polymer for colorimetric and fluorometric dual mode determination of ferric ions
摘要: A coordination polymer (CP) based nanoprobe is described for colorimetric and fluorometric (dual mode) determination of ferric ion. The method is making use of a nanosized Gd(III)?5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin coordination polymer that was prepared by a single-step hydrothermal procedure. The nanoprobe is monodisperse and has uniform size and good water solubility. It also exhibits strong fluorescence and magnetic resonance response. On exposure to Fe(III), the color of the solution changes from red to brown as the concentration of Fe(III) exceed 5 μM. Similarly, the red fluorescence of the probe (with excitation/emission peaks at 420/675 nm) decreases as concentrations of Fe(III) increase from 0.5 to 100 μM. The limit of detection is 98 nM in the fluorometric mode. The assay was applied to the determination of Fe(III) in fetal bovine serum samples.
关键词: Fluorometry,Metal-organic compound,Fe3+ detection,Colorimetry,Gd-coordinated
更新于2025-11-14 17:04:02
-
Laser-induced synthesis and photocatalytic properties of hybrid organic–inorganic composite layers
摘要: A laser-based method was developed for the synthesis and simultaneous deposition of multicomponent hybrid thin layers consisting of nanoentities, graphene oxide (GO) platelets, transition metal oxide nanoparticles, urea, and graphitic carbon nitride (g-C3N4) for environmental applications. The photocatalytic properties of the layers were tested through the degradation of methyl orange organic dye probing molecule. It was further demonstrated that the synthesized hybrid compounds are suitable for the photodegradation of chloramphenicol, a widely used broad-spectrum antibiotic, active against Gram-positive and Gram-negative bacteria. However, released in aquatic media represents a serious environmental hazard, especially owing to the formation of antibiotic-resistant bacteria. The obtained results revealed that organic, urea molecules can become an alternative to noble metals co-catalysts, promoting the separation and transfer of photoinduced charge carriers in catalytic composite systems. Laser radiation induces the reduction of GO platelets and the formation of graphene-like material. During the same synthesis process, g-C3N4 was produced, by laser pyrolysis of urea molecules, without any additional heat treatment. The layers exhibit high photocatalytic activity, being a promising material for photodegradation of organic pollutants in wastewater.
关键词: transition metal oxide nanoparticles,urea,photocatalytic properties,hybrid organic–inorganic composite layers,graphene oxide,graphitic carbon nitride,methyl orange,laser-based synthesis,chloramphenicol
更新于2025-11-14 17:04:02
-
Electron Transport Improvement of Perovskite Solar Cell via ZIF-8 Derived Porous Carbon Skeleton
摘要: To improve electron transport rate of perovskite solar cell, ZIF-8 derived porous carbon skeleton layer is prepared by carbonizing the ZIF-8 thin film on conducting glass as the electron transport skeleton of perovskite solar cell. Polyvinyl pyrrolidone is added during the synthesis of ZIF-8 to reduce the particle size of ZIF-8 and decrease the carbonization temperature below 600°C. The porous structure of ZIF-8 is mainly reserved at the optimized carbonization temperature. Then TiO2 nanoparticles are deposited on the surface of porous carbon skeleton to form an electron transport layer of perovskite solar cell with the structure of FTO/ZIF-8 derived porous carbon layer/TiO2/Perovskite/Spiro-OMeTAD/Au. Due to the good conductivity of the ZIF-8 derived porous carbon skeleton, the photogenerated electron transport rate of perovskite solar cell is increased. At the same time, the porous structure of ZIF-8 derived carbon layer increases the contact area between the perovskite layer and the TiO2 layer to favor separation of photogenerated charges. Therefore, the light-to-electric conversion efficiency of CH3NH3PbI3 perovskite solar cell is enhanced from 14.25% to 17.32%.
关键词: Electron transport,Increase of contact area,Porous carbon skeleton,Good conductivity,Polyvinyl pyrrolidone,Perovskite solar cell,Metal organic frameworks
更新于2025-11-14 17:04:02
-
Preparation of hierarchical flower-like nickel sulfide as hole transporting material for organic solar cells via a one-step solvothermal method
摘要: In this work, nickel sulfide (NiS) with a mesoporous network was prepared through a simple solvothermal approach. The influences of various contents of the sulfur source on the morphological changes were examined. Finally, the resultant NiS doped with various contents of sulfur were used as hole-transport layers (HTLs) for the application to organic solar cells (OSCs). Based on our knowledge of the implementation of OSCs, NiS-based HTLs are used for the first time in this paper. The OSCs developed with NiS_2.0 (NiS doped with 2.0 g of thioacetamide (sulfur source)) HTL showed a higher PCE response, at 2.28% than those fabricated with NiS_1.0 (NiS doped with 1.0 g of thioacetamide), NiS_1.5, (NiS doped with 1.5 g of thioacetamide), and NiS_2.5 (NiS doped with 2.5 g of thioacetamide), which only showed 1.38%, 1.88%, and 1.96%, respectively. Besides this improved photovoltaic response, it also demonstrated a superior reproducibility with a high degree of control over the environmental stability, i.e., 360 h, as compared to the bare PEDOT:PSS HTL-based OSCs, which showed just 240 h.
关键词: Stability,Reproducibility,Synthesis,Hole transport layer,Organic solar cells,Hierarchical flower-like nickel sulfide
更新于2025-11-14 17:04:02