修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2018
研究主题
  • Display Metrology
  • dSiPM
  • Quanta Image Sensor
  • CMOS
  • QIS
  • Complementary Metal Oxide Semiconductor
  • Digital Silicon Photo-Multiplier
  • Single Photon Avalanche Diode
  • SPAD
应用领域
  • Optoelectronic Information Science and Engineering
机构单位
  • The University of Edinburgh
  • STMicroelectronics Imaging Division
1265 条数据
?? 中文(中国)
  • Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties

    摘要: In this paper, we present for the first time the obtaining and characterization of new antibacterial and biocompatible nano-ZnO–bacterial cellulose (BC) material with controlled interfaces for studying in vitro microorganisms (Escherichia Coli (ATCC 8737), B. subtilis Spizizenii Nakamura (ATCC 6633), Candida albicans (ATCC10231)) and mammalian cells (human dermal fibroblast cells) response. The use of BC based material with controlled characteristics in terms of quantity and distribution of ZnO onto BC membrane (with 2D and 3D fibers arrangement) is directly correlated with the surface chemical and topographical properties, the method of preparation, and also with the type of cells implied for the specific application within the bioengineering fields. In our study, the uniform distribution and the control on the quantity of ZnO nanoparticles onto 3D BC were obtained using matrix assisted pulsed laser evaporation (MAPLE) method. The influence on particle distribution onto 3D bio cellulose were investigated based on two types of solvents (water and chloroform) involved in target preparation within MAPLE deposition. The attachment of the nanoparticles to the bacterial cellulose surface and fibrils was demonstrated by SEM and FT-IR studies. The BC-ZnO showed both resistance to bacteria-sticking and non-cytotoxic effect on the human dermal fibroblasts cells at a mass distribution onto surface of 1.68 mg ZnO NPS/mm2. These results represent a good premise in terms of tailoring BC substrates with ZnO particles that could determine or enhance both the biocompatibility and antibacterial properties of BC-composite materials.

    关键词: Antibacterial effect,Zinc oxide nanoparticles,MAPLE deposition technique,Bacterial cellulose,Biocompatibility

    更新于2025-09-23 15:23:52

  • Germanium catalyzed vapor–liquid–solid growth and characterization of amorphous silicon oxide nanotubes: comparison to the growth of its nanowires

    摘要: One-dimensional (1D) nanostructures were grown with a simple technique using continuous-wave laser vaporization of a Ge target containing 5 at.% Si in high-pressure (up to 0.9 MPa) Ar gas atmosphere. A maximum amount (~ 30% of all products) of 1D nanostructures was obtained at 0.9 MPa and these nanostructures were identified as amorphous silicon oxide (SiOx) nanotubes (NTs) and attached with crystalline Ge-rich NPs with elongated prolate-like or sphere-like shapes at their tips by transmission electron microscopy (TEM), high-angle annular dark-field-scanning TEM, and energy dispersive X-ray line scan spectrometry. As the Ar pressure decreased from 0.9 to 0.03 MPa, the average diameters, wall thicknesses, and lengths of the NTs decreased from 57.9 to 22.9 nm, 13.2 to 6.7 nm, and 2.1 to 0.2 μm, respectively, and the tip NP size decreased from 139.0 to 41.7 nm. There was a strong correlation among the diameters, wall thicknesses, and lengths of the NTs and tip Ge NP sizes, indicating the role of molten Ge NPs as catalyst seeds for the precipitation of SiOx in a vapor–liquid–solid growth mechanism at high temperature. The SiOx precipitation quantities from the seed NPs for the NTs were compared with those of amorphous SiOx nanowires (NWs) at 0.1–0.9 MPa to clarify the growth mechanism of the NTs. We argue that smaller precipitation quantities of SiOx than those for the NWs play a critical role in the formation of cap structures with different sizes and shapes from the molten Ge NPs and the growth of the NTs.

    关键词: Laser vaporization,Germanium catalyst,Silicon oxide,Nanotube,Nanowire

    更新于2025-09-23 15:23:52

  • 3D graphene/AgBr/Ag cascade aerogel for efficient photocatalytic disinfection

    摘要: To design semiconductor-based photocatalysts with efficient charge carriers separation and transfer remains an enduring goal of artificial photosynthesis toward target redox reactions. Herein, we report a cascade monolith composite of ternary reduced graphene oxide aerogel/silver bromide/silver (RGA/AgBr/Ag) with efficient charge carriers separation, which exhibits much higher activity than bare AgBr toward photocatalytic bacteria inactivation. Mechanistic studies reveal that the reduced graphene oxide aerogel (RGA) scaffold and Ag nanoparticles serve as electron relay mediators to promote the charge carriers separation and transfer. In addition, the metallic Ag nanoparticles derived from the photoreduction of AgBr during the photocatalytic disinfection can further boost the separation of charge carriers. Control experiments demonstrate that the surface plasmon resonance (SPR)-excited hot electrons of Ag nanoparticles also contributes to enhancing the photoactivity of RGA/AgBr/Ag. As such, the synergy of multiple electron transfer behavior integratively leads to the boosted photocatalytic performance of such RGA/AgBr/Ag aerogel for bacteria inactivation with convenient recyclable operability.

    关键词: charge transfer,aerogel,silver bromide,Ag nanoparticles,reduced graphene oxide

    更新于2025-09-23 15:23:52

  • PEGylated doxorubicin cloaked nano-graphene oxide for dual-responsive photochemical therapy

    摘要: Graphene oxide (GO) own huge surface area and high drug loading capacity for aromatic molecules, such as doxorubicin (DOX). However, its biocompatibility is poor and it might agglomerate in physiological condition. Chemical modification of GO with hydrophilic polymer, especially PEGylation, was a common method to improve its biocompatibility. But the chemical modification of GO was complicated, and its drug loading capacity might be reduced because of the occupation of its functional groups. In this study, DOX-PEG polymers with different PEG molecular weight were synthesized to modify nano graphene oxide (NGO) to simultaneously realize the solubilization of NGO and the high loading capacity of DOX. The result showed that the drug release of NGO@DOX-PEG was pH sensitive. NIR irradiation could augment the drug release, cellular uptake, cytotoxicity and nuclear translocation of nanodrugs. Among the three kinds of nanodrugs, NGO@DOX-PEG5K was superior to others. It suggested that after conjugating with PEG, the bond between DOX-PEG and NGO was weakened, which resulted in a better drug release and treatment effect. In summary, the NIR and pH dual-responsive NGO@DOX-PEG nanodrugs were developed by noncovalent modification, and it demonstrated excellent biocompatibility and photochemical therapeutic effect, presenting a promising candidate for antitumor therapy, especially NGO@DOX-PEG5K.

    关键词: Nano-drug Delivery System,pH sensitive,Nano-Graphene Oxide,photochemical therapy,Doxorubicin

    更新于2025-09-23 15:23:52

  • The <i>h</i> -Sb <sub/>x</sub> WO <sub/> 3+2 <i>x</i> </sub> Oxygen Excess Antimony Tungsten Bronze

    摘要: The previously unreported oxygen excess hexagonal antimony tungsten bronze is reported, with a composition of Sb0.5W3O10, in the following denoted as h-SbxWO3 + 2x with x = 0.167, to demonstrate its analogy to classical AxWO3 tungsten bronzes. This compound forms in a relatively narrow temperature range between 580 8C < T < 620 8C. It was obtained as a dark-blue polycrystalline powder, and as thin, needle-shaped, blue single crystals. h-SbxWO3 + 2x crystallizes in the hexagonal space group P6/mmm with the cell parameters a = 7.4369(4) (cid:2) and c = 3.7800(2) (cid:2). The antimony and excess oxygen occupy the hexagonal channels within the network of corner-sharing WO6 octahedra. h-SbxWO3 + 2x has a resistivity of 1300 K (cid:2) 1.28 mW cm at room temperature, with little if any temperature-dependence on cooling. DFT calculations on a simplified model for this compound find a metallic-like electronic structure with the Fermi level falling within rather flat bands, especially around the G point.

    关键词: hexagonal bipyramids,metallic oxide,tungsten,antimony,bronze

    更新于2025-09-23 15:23:52

  • A novel non-enzymatic zinc oxide thin film based electrochemical recyclable strip with device interface for quantitative detection of catechol in water

    摘要: Catechol, one of the major effluents released by various chemical and metal processing industries, causes severe pollution of groundwater. Monitoring of catechol in water using cost-effective, handheld sensor is demanding for the safety of the environment. In this work, non-enzymatic zinc oxide thin film based electrochemical strip sensor is developed on conducting glass substrate for detection of catechol. The preparation of strip without employing standard Pt or Ag/AgCl electrodes and simply depositing ZnO through wet chemical process represents a cost-effective innovative technique. The ZnO thin film is characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and grazing incidence X-ray diffractrometer (GIXRD). Catechol is electrochemically detected by means of cyclic voltammetry and amperometry. A prominent redox peak of the developed strip attributed to the detection of catechol is observed at -0.26 V in cyclic voltammetry. The strip is integrated with readout meter and an algorithm is built based on the experimentally observed linear variation of amperometric current with catechol concentration. The quantitative detection performance is demonstrated by testing 0.1-12 ppm catechol solutions.

    关键词: Zinc oxide,Catechol,Electrochemical strip sensor,Amperometry,Cyclic voltammetry

    更新于2025-09-23 15:23:52

  • Water-soluble titanium-oxides: Complexes, clusters and nanocrystals

    摘要: The water-soluble titanium-oxide structures covered in this review span a continuum from molecular clusters to colloidal nanocrystals. Here, a deliberate distinction is made between titanium clusters and nanoparticles with organic ligands, soluble in organic solvents, and related structures prepared and soluble in water. This distinction is made in response to rapid developments in three areas covered in this article: small titanium-oxide clusters prepared at low pH values in water, heterpolytungstate macroanions with high-nuclearity titanium-oxide cores, and polyoxometalate complexes of anatase-phase TiO2. The latter nanostructures occupy a unique position between polyoxometalate macroanions and traditional colloidal TiO2. As such, the progressively larger water-soluble titanium-oxide structures covered in the three main sections of this review establish a continuum that begins to blur the longstanding divide between molecular and colloid science.

    关键词: Polyoxometalates,Titanium oxide,Water soluble,Clusters,Nanocrystals

    更新于2025-09-23 15:23:52

  • Optimal synthesis of antimony-doped cuprous oxides for photoelectrochemical applications

    摘要: We investigated the influence of Sb dopant concentration on the structural, electrical, and photoelectrochemical properties of the photocathode cuprous oxide (Cu2O) thin films. The photoabsorber p-type Cu2O films were prepared by electrodeposition in ionic electrolytes including copper sulfate and antimony sulfate at 333 K and pH=10. The small amount of Sb doping contributes to the fast Cu ion transport to the substrate and ion consumption; consequently, the p-type Cu2O with high crystalline quality can be reproducibly synthesized with high electrical stability. Among the various samples, the mole fraction of c(Sb)/[c(Cu)+c(Sb)] = 0.75 mol % exhibits the best electrical resistivity and improved transparency in the infrared region, which is involved with the fast overlap of the nuclei crystals under 5 nm from the high nuclei density. Additionally, the post-thermal annealed Sb-doped Cu2O sample reveals an enhanced photocurrent of ~0.65 mA/cm2 vs. RHE (reversible hydrogen electrode) without metal catalysts.

    关键词: Preferred orientation,Post annealing,Antimony doping,Photoelectrochemical cell,Cuprous oxide

    更新于2025-09-23 15:23:52

  • Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets

    摘要: Macrophages play a key role in nanoparticle removal and are primarily responsible for their uptake and trafficking in vivo. Due to their functional plasticity, macrophages display a spectrum of phenotypes between two extremes identified as pro-inflammatory M1 and reparative M2 macrophages, characterized by the expression of specific cell surface markers and the secretion of different cytokines. The influence of graphene oxide (GO) nanosheets functionalized with poly(ethylene glycol-amine) and labelled with fluorescein isothiocyanate (FITC-PEG-GO) on polarization of murine peritoneal macrophages towards M1 and M2 phenotypes was evaluated in basal and stimulated conditions by flow cytometry and confocal microscopy through the expression of different cell markers: CD80 and iNOS as M1 markers, and CD206 and CD163 as M2 markers. Although FITC-PEG-GO did not induce M1 or M2 macrophage polarization after 24 and 48 h in basal conditions, this nanomaterial decreased the percentage of M2 reparative macrophages. We have also compared control macrophages with macrophages that have or have not taken up FITC-PEG-GO after treatment with these nanosheets (GO+ and GO- cells, respectively). The CD80 expression diminished in GO+ macrophages after 48 h of GO treatment but the CD206 expression in GO+ population showed higher values than in both GO- population and control macrophages. In the presence of pro-inflammatory stimuli (LPS and IFN-γ), a significant decrease of CD80+ cells was observed after treatment with GO. This nanomaterial also induced significant decreases of CD206+ and CD163+ cells in the presence of reparative stimulus (IL-4). The CD80, iNOS and CD206 expression was lower in both GO- and GO+ cells than in control macrophages. However, higher CD163 expression was obtained in both GO- and GO+ cells in comparison with control macrophages. All these facts suggest that FITC-PEG-GO uptake did not induce the macrophage polarization towards the M1 pro-inflammatory phenotype, promoting the control of the M1/M2 balance with a slight shift towards M2 reparative phenotype involved in tissue repair, ensuring an appropriate immune response to these nanosheets.

    关键词: Graphene oxide nanosheets,Macrophage polarization,Peritoneal macrophages,Cytokine profiling

    更新于2025-09-23 15:23:52

  • Nanoscale reduced graphene oxide-mediated photothermal therapy together with IDO inhibition and PD-L1 blockade synergistically promote antitumor immunity

    摘要: Despite the potential efficacy of immune checkpoint blockade for effective treatment of cancer, this therapeutic modality is not generally curative and only a fraction of patients respond. Combination approaches provide strategies to target multiple antitumor immune pathways to induce synergistic antitumor immunity. Here, a multi-combination immunotherapy including photothermal therapy (PTT), indoleamine-2,3-dioxygenase (IDO) inhibition and programmed cell death-ligand 1 (PD-L1) blockade is introduced for inducing synergistic antitumor immunity. We designed a multifunctional IDO inhibitor (IDOi)-loaded reduced graphene oxide (rGO)-based nanosheets (IDOi/rGO nanosheets) with the properties to directly kill tumor cells under laser irradiation and in situ trigger antitumor immune response. In vivo experiments further revealed that the triggered immune response can be synergistically promoted by IDO inhibition and PD-L1 blockade; the responses included the enhancement of tumor-infiltrating lymphocytes (TILs) including CD45+ leukocytes, CD4+ T cells, CD8+ T cells and NK cells, the inhibition of the immune suppression activity of regulator T cells (Tregs) and the production of INF-γ. We also demonstrate that the three combinations of PTT, IDO inhibition and PD-L1 blockade could effectively inhibit the growth of both irradiated tumors and tumors in distant sites without PTT treatment. This work can be thought as an important proof-of-concept to target multiple antitumor immune pathways to induce synergistic antitumor immunity.

    关键词: photothermal therapy,reduced graphene oxide,IDO inhibition,combinatorial immunotherapy,PD-L1

    更新于2025-09-23 15:23:52