- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2018
- Display Metrology
- dSiPM
- Quanta Image Sensor
- CMOS
- QIS
- Complementary Metal Oxide Semiconductor
- Digital Silicon Photo-Multiplier
- Single Photon Avalanche Diode
- SPAD
- Optoelectronic Information Science and Engineering
- The University of Edinburgh
- STMicroelectronics Imaging Division
-
Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu <sub/>2</sub> O Polyhedra Arising from Tunable Interfacial Band Alignment
摘要: ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance (EPR) spectra agree with these experimental observations. Time-resolved photoluminescence (TRPL) profiles provide charge transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O (110)/ZnS (200) plane interface. A modified Cu2O–ZnS band diagram is presented. Density functional theory (DFT) calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing charge transfer across the Cu2O (110)/ZnS (200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.
关键词: interfacial charge transfer,zinc sulfide,cuprous oxide,facet-dependent properties,heterojunctions,band alignment
更新于2025-09-23 15:23:52
-
Two-dimensional amorphous heterostructures of Ag/a-WO3- for high-efficiency photocatalytic performance
摘要: Synergistic photocatalysis is an important concept for designing the high-efficiency catalysis for fundamental research and technical applications. In this study a well-defined synergistic photocatalysis system is realized by the 2D amorphous heterostructures (2DAHs) Ag/a-WO3-x, which are constructed by Ag nanoparticles on 2D amorphous tungsten oxide (a-WO3-x) fabricated via supercritical CO2 method. We demonstrate theoretically that the oxygen evolution reactions (OER), characterized by photocurrent response, have been dramatically improved in Ag/a-WO3-x than those of both single a-WO3-x and Ag/WO3 systems. Such an enhanced photoelectrochemical performance attributes to the superposition effect of amorphous effect catalysis and local surface plasmon resonances (LSPR) catalysis. More interestingly, the ab initio density-functional theory calculations reveal that the amorphous effect catalysis ascribes to the unique d-d tail states coupling of both Ag and W atoms in the 2DAHs. Overall, our findings not only propose the prototype of synergistic photocatalysis, but also provide a new methodology to the design of novel catalyst.
关键词: 2D amorphous tungsten oxide,amorphous effect catalysis,synergistic photocatalysis,d-d tail states coupling,2D amorphous heterostructures Ag/a-WO3-x
更新于2025-09-23 15:23:52
-
Enhanced photoelectrochemical performance of CdO-TiO2 nanotubes prepared by direct impregnation
摘要: A direct impregnation technique was adopted to prepare a series of CdO-TiO2 nanotubes. Self-organized TiO2 nanotubes were prepared using an optimized two-step anodization process. The morphology, crystallinity, elemental composition, and photoelectrochemical properties of the CdO-TiO2 nanotubes were characterized by scanning electron microscopy (SEM), transimission electron microscopy (TEM), UV-Vis diffuse reflection spectra (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and photoelectric cell (PEC) measurements. At lower Cd(NO3)2 concentration, no obvious CdO crystalline particle formed on the TiO2 NTbs surface, while the EDS and XPS measurements shows the increasing doping amount of CdO as the Cd(NO3)2 concentration increasing. At a relatively high precursor concentration (800 mM), the formation of particle clusters and nanocrystals on the surface of the TiO2 nanotubes could be easily detected, and the sample presented XRD diffraction peaks indicative of CdTiO3. Meanwhile, the Ti 2p XPS spectra displayed an obvious shift (~0.3 eV), which could be attributed to the change in the lattice structure. A negative shift in the flatband potential (Vfb) and a decrease in charge carrier density were observed after doping. The maximum incident photon to charge carrier efficiency (IPCE) value calculated for the CdO-TiO2 nanotubes was 10.16%, much higher than that of pure TiO2 nanotubes.
关键词: Cadmium oxide,Photoelectrochemical,Impregnation-Calcination,TiO2 nanotubes
更新于2025-09-23 15:23:52
-
A novel P-doped Fe2O3-TiO2 mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation
摘要: In this work, a novel P-doped Fe2O3-TiO2 mixed oxide was successfully prepared by a microwave assisted sol-gel method. The synthesized catalyst was characterized by N2 physisorption, SEM, XRD, XPS, and FTIR, UV–vis DRS, and PL spectroscopies. The iron and phosphorus content in the catalyst samples were quanti?ed by AAS and ICP-OES, respectively. The photocatalytic activity of P-doped Fe2O3-TiO2 powders were evaluated in the photocatalytic degradation of sulfamethazine (SMTZ). The Box Behnken design (BBD) and response surface methodology (RSM) were applied for modeling the e?ect and optimizing of the operational parameters levels on the degradation percentage of SMTZ. The complete degradation and mineralization percentage of 30% of SMTZ solution at pH 9 was achieved within 300 min of reaction, with the optimum P doping amount of 1.2 wt % and 1.25 g/L of catalyst loading. The 1.2 wt % P-doped Fe2O3-TiO2 mixed oxide showed considerably higher photocatalytic activity than Fe2O3-TiO2 or TiO2. This enhanced performance could be attributed to the small crystallite size, narrow band gap, high speci?c surface area and increased number of surface hydroxyls on TiO2 nanoparticles. Additionally, the stability and reusability of this catalyst was demonstrated during three cycles of SMTZ degradation.
关键词: Enhanced surface area,Visible light activation,Box behnken design,Reusability,P-doped Fe2O3-TiO2 mixed oxide
更新于2025-09-23 15:23:52
-
Optimizing P25-rGO composites for pesticides degradation: Elucidation of photo-mechanism
摘要: The junction of graphene oxide with TiO2 particles can help develop more efficient photocatalysts capable to harvest radiation in a wider range of the electromagnetic spectrum for real photocatalytic applications. The synthesis procedure of TiO2 P25-rGO composites was optimized to photodegrade a selected mixture of pesticides classified by EU as priority pollutants (alachlor, diuron, atrazine and isoproturon). The influence of temperature and time of hydrothermal method, as well as the effect of graphene oxide (GO) percentage added in the synthesis, was studied to obtain the nanocomposite that showed the highest photoactivity. Long time and moderate temperature have offered the best interaction between TiO2 P25 and rGO. GO was quantitatively reduced to rGO during the hydrothermal treatment, but maintains a higher level of disorder. The optimal GO loading was found around 0.25 wt. %, which allowed the photocatalyst achieve high photocatalytic performance both in phenol and pesticides photodegradation. Finally, in order to try to elucidate the photocatalytic mechanism of the selected mixture of pesticides three scavengers were employed: methanol to scavenge hydroxyl radicals, formic acid for the photogenerated holes, and copper (II) nitrate to quench the electrons of the conduction band. In conclusion, all these pesticides were mostly photodegraded by the hydroxyl radicals (HO?) produced from the photo-induced holes (h+); given that the oxidant species generated from electrons or mediated by direct mechanism were not relevant.
关键词: Scavengers,TiO2P25-reduced graphene oxide composites,Pesticides,Photo-mechanism
更新于2025-09-23 15:23:52
-
Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films
摘要: We report the electrical and optical characteristics of SnO2 thin films irradiated by microwaves (MWs) and grown using atomic layer deposition in a commercial MW oven operating at a frequency of 2.45 GHz. The properties of the MW-irradiated SnO2 thin films were compared with those of the as-deposited SnO2 thin films. After MW irradiation, the conductivity and transparency of the thin films were enhanced. In addition, the samples irradiated for 5 min showed optimal carrier concentration, Hall-mobility, resistivity, and transmittance values of 1.5 × 1020 cm-3, 4.6 cm2/V·s, 8 × 10-3 Ω·cm, and 95.77%, respectively. The improved properties of the MW-irradiated samples were attributed mainly to the formation of an oxygen vacancy in the SnO2 lattice during MW irradiation. Our results can be applied for the fabrication of pure SnO2-based transparent conductive oxides; these oxides are generally doped with other elements.
关键词: SnO2,Transparent Conductive Oxide,Microwave Irradiation,Electrical and Optical Properties
更新于2025-09-23 15:23:52
-
Mitigating the electromagnetic radiation by coupling use of waste cathode-ray tube glass and graphene oxide on cement composites
摘要: With technological development, the rapid growing numbers of electronic devices generate severe electromagnetic interference (EMI) and radiation to human environment. In this study, the coupling effect of graphene oxide (GO) addition (up to 0.10 wt.% of cement) and waste cathode-ray tube (CRT) glass replacement for fine aggregates (30 and 60 wt.%) in cement-based composites on mitigating EMI was studied. The electric permittivity obtained using a decoupling method was applied for evaluating the EMI shielding capacity of cement-based composites, while direct current (DC) electrical resistance measurement is conducted using four-probe method. The DC electrical resistivity of specimens increases insignificantly with increasing in GO content, but remarkably with increasing CRT glass content from 30 to 60 wt.%. The 60 wt.% replacement of waste CRT glass with 0.1 wt.% GO addition increases the relative permittivity by about 50% and 200% when the frequency is in the ranges of 104–5 × 106 Hz and 101–103 Hz, respectively. It is concluded that a significant increase in the permittivity can be obtained owing to the synergetic interaction between waste CRT glass and GO. The improvement in the EMI shielding ability of cement-based composites not only enables the applications of these composites in mitigating electromagnetic pollution, but also promotes large-volume recycling of toxic waste CRT glass.
关键词: Permittivity,Waste CRT glass,Cement composite,Graphene oxide,Electromagnetic interference
更新于2025-09-23 15:23:52
-
Modified dielectric and ferroelectric properties in the composite of ferrimagnetic Co1.75Fe1.25O4 ferrite and ferroelectric BaTiO3 perovskite in comparison to Co1.75Fe1.25O4 ferrite
摘要: The ferrimagnetic Co1.75Fe1.25O4 ferrite with cubic spinel structure (space group Fd3m) was made into composite by mixing with ferroelectric BaTiO3 perovskite with tetragonal structure (space group P4mm) at the mass ratio 50:50. Disc shaped composite powder was finally heated at 1000 °C to study the structure, dielectric and ferroelectric properties. The electrical conductivity, dielectric response and ferroelectric properties of the composite samples are remarkably modified in comparison to their ferrite counterparts before making the composite. The composite system has shown improvement of dielectric constant with reduced dielectric loss factor and electrical conductivity in comparison to the ferrite samples. The mechanism of modified dielectric properties was understood by analyzing ac conductivity data using Jonscher's power law, complex impedance spectra in Cole-Cole plots using equivalent circuit model, and complex electrical modulus spectra using Kohlrausch, Williams and Watts (KWW) proposed model. Electrical conductivity in the composite material was determined by small polaron hoping (SPH) up to measurement temperature 400 K (close to ferroelectric transition of BaTiO3) and overlapping large polaron hopping conductivity at higher temperatures. In contrast, SPH dominates throughout the measurement temperature range for ferrite samples. The space charge polarization, which was largely effective at low frequencies and high measurement temperatures, is significantly reduced in composite samples. High capacitive response in composite samples and its extension up to high measurement temperature is confirmed from the temperature dependence of phase shift and well defined ferroelectric polarization loop and associated electrical parameters.
关键词: Composite dielectric,Polaron hopping,Ferroelectric polarization,Co rich spinel oxide
更新于2025-09-23 15:23:52
-
Gamma irradiated poly (methyl methacrylate)-reduced graphene oxide composite thin films for multifunctional applications
摘要: Poly (methyl methacrylate) (PMMA)-Reduced Graphene Oxide (rGO) (PrGO) composite films were fabricated by solvent evaporation technique and exposed to gamma radiation at different dosages viz. 25 kGy, 50 kGy and 100 kGy. The XRD analysis revealed the phases of PMMA and rGO and further confirmed the semi-crystalline nature of PMMA. The irradiation also decreased the peak intensities of the functional groups of PMMA and rGO. At 50 kGy irradiation, lamellar structures were formed on the surface of the films (50 kGy) due to the thermal fluctuations whereas, at higher dosage (100 kGy), pores were formed. The surface roughness and contact angle were enhanced on 50 kGy sample. The drug impregnated PrGO50 and PrGO100 samples showed sustained and burst release of drug respectively and in addition exhibited a better zone of inhibition against E. coli bacteria. All the samples were hemocompatible in nature. Fibroblast proliferation was enhanced with no cytotoxic effect on 50 kGy samples. Hence, the gamma irradiated samples could be an excellent candidate for biosensing and biomedical applications.
关键词: Biomedical Applications,Polymer,Bioactive,Reduced-graphene oxide composites
更新于2025-09-23 15:23:52
-
Silver Nanostructures on Graphene Oxide as the Substrate for Surface-Enhanced Raman Scattering (SERS)
摘要: Nanosized surface-enhanced Raman scattering (SERS) substrates fabricated by the controlled growth of metal nanostructures on water-dispersed two-dimensional nanomaterials can open a new avenue for SERS analysis of liquid samples in biological fields. In this work, regular and uniform Ag nanostructures were grown on the surface of graphene oxide (GO) through a microwave-assisted hydrothermal method. Polyamidoamine (PAMAM) dendrimers were assembled on the surface of GO to form GO/PAMAM templates for growing Ag nanostructures, which are primarily comprised of Ag dimers and trimers. The prepared Ag/GO nanocomposites are highly dispersed and stable in aqueous solution and may be used as substrates for enhanced Raman detection of rhodamine 6 G (R6G) in aqueous solution. This special substrate provides high-performance SERS and suppresses R6G fluorescence in aqueous solution and is promising as a nanosized material for the enhanced Raman detection of liquid samples in biological diagnostics.
关键词: graphene oxide (GO),Surface-enhanced Raman scattering (SERS),polyamidoamine (PAMAM) dendrimers,transmission electron microscopy (TEM),Fourier transform infrared (FTIR) spectroscopy,rhodamine 6G (R6G)
更新于2025-09-23 15:23:52