修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2018
研究主题
  • Display Metrology
  • dSiPM
  • Quanta Image Sensor
  • CMOS
  • QIS
  • Complementary Metal Oxide Semiconductor
  • Digital Silicon Photo-Multiplier
  • Single Photon Avalanche Diode
  • SPAD
应用领域
  • Optoelectronic Information Science and Engineering
机构单位
  • The University of Edinburgh
  • STMicroelectronics Imaging Division
1265 条数据
?? 中文(中国)
  • Determination of physical mechanism responsible for the capacitance-voltage weak inversion “hump” phenomenon in n-InGaAs based metal-oxide-semiconductor gate stacks

    摘要: Weak inversion capacitance-voltage (C-V) “hump” is a widely observed phenomenon at n-InGaAs based metal oxide semiconductor (MOS) structures. The mechanism responsible for this phenomenon is still under discussion. The C-V hump can be explained as an interaction of interface states with either one or both semiconductor energy bands. Each of the proposed mechanisms leads to a different interpretation of C-V hump. Simulating the mechanisms by relevant equivalent circuits, the capacitance and conductance characteristics of the MOS structure were calculated and compared with experimental results. The mechanism responsible for the C-V hump was determined.

    关键词: interface states,equivalent circuits,n-InGaAs,metal-oxide-semiconductor,capacitance-voltage hump

    更新于2025-11-14 17:28:48

  • Laser-induced synthesis and photocatalytic properties of hybrid organic–inorganic composite layers

    摘要: A laser-based method was developed for the synthesis and simultaneous deposition of multicomponent hybrid thin layers consisting of nanoentities, graphene oxide (GO) platelets, transition metal oxide nanoparticles, urea, and graphitic carbon nitride (g-C3N4) for environmental applications. The photocatalytic properties of the layers were tested through the degradation of methyl orange organic dye probing molecule. It was further demonstrated that the synthesized hybrid compounds are suitable for the photodegradation of chloramphenicol, a widely used broad-spectrum antibiotic, active against Gram-positive and Gram-negative bacteria. However, released in aquatic media represents a serious environmental hazard, especially owing to the formation of antibiotic-resistant bacteria. The obtained results revealed that organic, urea molecules can become an alternative to noble metals co-catalysts, promoting the separation and transfer of photoinduced charge carriers in catalytic composite systems. Laser radiation induces the reduction of GO platelets and the formation of graphene-like material. During the same synthesis process, g-C3N4 was produced, by laser pyrolysis of urea molecules, without any additional heat treatment. The layers exhibit high photocatalytic activity, being a promising material for photodegradation of organic pollutants in wastewater.

    关键词: transition metal oxide nanoparticles,urea,photocatalytic properties,hybrid organic–inorganic composite layers,graphene oxide,graphitic carbon nitride,methyl orange,laser-based synthesis,chloramphenicol

    更新于2025-11-14 17:04:02

  • Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method

    摘要: In this paper, a high-performance liquefied petroleum gas (LPG) sensor based on zinc oxide/polypyrrole/lead sulfide quantum dots (ZnO/PPy/PbS QDs) nanocomposite film was demonstrated, which was fabricated by layer-by-layer (LbL) self-assembly and successive ionic layer adsorption and reaction (SILAR) technique. The nanostructure features of the as-prepared ZnO/PPy/PbS nanocomposite film were confirmed by various characterization techniques. The room temperature gas-sensing investigation of the ZnO/PPy/PbS QDs nanocomposite sensor was performed against LPG gas in a wide concentration range. The experimental results showed an outstanding response for LPG sensing at room temperature compared with previous reports, the response can reach 45.47% at 1000 ppm LPG. And it also demonstrated good selectivity and excellent repeatability. The sensing mechanism of the PPy/ZnO/PbS QDs nanocomposite film gas sensor is owing to the p-n heterojunction created at the ZnO/PPy interface, as well as much more active adsorption sites.

    关键词: polypyrrole,liquefied petroleum gas,zinc oxide,lead sulfide quantum dots,SILAR method

    更新于2025-11-14 17:04:02

  • Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells

    摘要: Ni–graphite core–shell nanoparticles (CSNPs), which consisted of Ni nanoparticles (NPs) wrapped with several graphene layers, were grown by the thermal reduction of NiO NPs using H2. The effect of the synthesis temperature (800, 900, 1000, and 1100 °C) on the formation of multilayer graphene shells on the Ni core NPs was investigated to evaluate the structural and electrical characteristics of the particles. The proposed chemical reactions for the formation of Ni NPs can be summarized as follows: formation of liquid Ni by the reduction of NiO, thermal decomposition of the NiO phase, and formation of multilayer graphene shell because of the supersaturation of C in the liquid Ni phase. The resistivity of the electrode pattern fabricated with the Ni–graphite CSNP paste was found to be 6.75 × 10?3 ?·cm. Further, the power conversion efficiency of bulk heterojunction solar cells fabricated with the Ni–graphite CSNPs is higher than that of cells fabricated without the Ni- graphite CSNPs. Thus, our Ni–graphite CSNPs can be employed as a highly efficient electrode material in bulk heterojunction solar cells.

    关键词: Thermal reduction,Core–shell structure,Nickel oxide nanoparticle,Graphite,Graphene

    更新于2025-11-14 17:04:02

  • Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application

    摘要: ZnxCd1-xSe@ZnO hollow spheres (HS) were successfully fabricated for application in quantum dot sensitized solar cells (QDSSCs) based on ZnO HS through the ion-exchange process. The sizes of the ZnxCd1-xSe@ZnO HS could be tuned from ~300 nm to ~800 nm using ZnO HS pre-synthesized by different sizes of carbonaceous spheres as templates. The photovoltaic performance of QDSSCs, especially the short-circuit current density (Jsc), experienced an obvious change when different sizes of ZnxCd1-xSe@ZnO HS are employed. The ZnxCd1-xSe@ZnO HS with an average size distribution of ~500 nm presented a better performance than the QDSSCs based on other sizes of ZnxCd1-xSe@ZnO HS. When using the mixture of ZnxCd1-xSe@ZnO HS with different sizes, the power conversion ef?ciency can be further improved. The size effect of the hollow spheres, light scattering, and composition gradient structure ZnxCd1-xSe@ZnO HS are responsible for the enhancement of the photovoltaic performance.

    关键词: zinc oxide,alloyed quantum dots,sensitized solar cells,hollow spheres

    更新于2025-11-14 17:04:02

  • Carbon Black and Titanium Interlayers Between Zinc Oxide Photo Electrode and Fluorine-Doped Tin Oxide for Dye-Sensitized Solar Cells

    摘要: Carbon black and titanium interlayers were deposited on ?uorine-doped tin oxide (FTO) anode layers using radio frequency magnetron sputtering method. On top of them, Zinc oxide (ZnO) photo anode layers were prepared using plasma enhanced chemical vapor deposition technique. ZnO high binding energy as well as good breakdown strength, cohesion, and stability used as a photo electrode material for dye-sensitized solar cells (DSSC), but it does not have a good electrical contact to the FTO anode. To solve this problem, the carbon black and titanium interlayers were deposited. The effect of interlayers on the power conversion ef?ciency (PCE) of DSSCs was investigated. The PCE of the devices with 120-nm-thick interlayers of carbon black or titanium was 5.21 or 4.45%, respectively, which were larger than the PCE of the devices without such interlayers (3.25%). The smooth interface of the carbon black interlayer reduced the interface impedance of the ZnO photo anode effectively. On the other hand, the titanium interlayer with TiO2 on the ZnO side increased the impedance, and decreased the PCE.

    关键词: Fluorine-Doped Tin Oxide,Titanium,Carbon Black,Dye-Sensitized Solar Cells

    更新于2025-11-14 17:04:02

  • Design of Mn-doped CdxZn1-xSe@ZnO triple-shelled hollow microspheres for quantum dots sensitized solar cells with improved photovoltaic performance

    摘要: Mn-CdxZn1-xSe@ZnO multi-shelled (including single-shelled, double-shelled, and triple-shelled) hollow microspheres (HMS) were successfully synthesized for application in quantum dots sensitized solar cell (QDSSC). The influence of shell numbers on photovoltaic performance of QDSSC were investigated. The results showed that larger surface area, repeated light reflection and reinforced light scattering can be achieved with triple-shelled HMS, which can improve light harvesting efficiency. Furthermore, midgap state created by Mn-doping in CdxZn1-xSe will facilitate electrons injection and collection from excited CdxZn1-xSe quantum dots (QDs) to ZnO. The multi-shelled effects and Mn-doping finally improve the short-circuit current (Jsc) of Mn-CdxZn1-xSe@ZnO tripled-shelled HMS solar cell to 20.21 mA cm?2, leading to the power conversion efficiency significantly enhanced to 3.39%.

    关键词: Zinc oxide,Solar cells,Quantum dots,Hollow microspheres

    更新于2025-11-14 17:04:02

  • The Preparation and Characterization of Fluorinated Graphene Oxide with Different Degrees of Oxidation

    摘要: For many excellent graphene derivatives, tailoring the material properties is crucial to get a broader application. In the present work, a series of fluorinated graphene oxide (FGO) with various oxidation degree were synthesized using a modified Hummers method at different reaction temperatures. The structure and property of FGO were analyzed by X-ray diffraction (XRD), Fourier transform infra-red spectra (FT-IR), X-ray photoelectron spectra (XPS) and Zeta potential analysis. The results indicate that the oxygen contents range from 5.61 % to 21.96 % in FGO can be tuned by altering the reaction temperatures. The oxygen in FGO is presented mainly in the form of epoxide and carboxyl groups. With increasing reaction temperature from 50 °C to 90 °C, the oxygen content in FGO decreases and thicker multilayered FGO is formed with lower dispersibility.

    关键词: Controllable oxidation,Fluorinated Graphene Oxide,Low temperature reaction

    更新于2025-11-14 17:04:02

  • In-Situ Synthesis of Nb2O5/g-C3N4 Heterostructures as Highly Efficient Photocatalysts for Molecular H2 Evolution under Solar Illumination

    摘要: This work focuses on the synthesis of heterostructures with compatible band positions and a favourable surface area for the efficient photocatalytic production of molecular hydrogen (H2). In particular, 3‐dimensional Nb2O5/g‐C3N4 heterostructures with suitable band positions and high surface area have been synthesized employing a hydrothermal method. The combination of a Nb2O5 with a low charge carrier recombination rate and a g‐C3N4 exhibiting high visible light absorption resulted in remarkable photocatalytic activity under simulated solar irradiation in the presence of various hole scavengers (triethanolamine (TEOA) and methanol). The following aspects of the novel material have been studied systematically: the influence of different molar ratios of Nb2O5 to g‐C3N4 on the heterostructure properties, the role of the employed hole scavengers, and the impact of the co‐catalyst and the charge carrier densities affecting the band alignment. The separation/transfer efficiency of the photogenerated electron‐hole pairs is found to increase significantly as compared to that of pure Nb2O5 and g‐C3N4, respectively, with the highest molecular H2 production of 110 mmol/g·h being obtained for 10 wt % of g‐C3N4 over Nb2O5 as compared with that of g‐C3N4 (33.46 mmol/g·h) and Nb2O5 (41.20 mmol/g·h). This enhanced photocatalytic activity is attributed to a sufficient interfacial interaction thus favouring the fast photogeneration of electron‐hole pairs at the Nb2O5/g‐C3N4 interface through a direct Z‐scheme.

    关键词: Z‐Scheme,H2 evolution,hydrothermal synthesis,graphitic carbon nitride,photocatalysis,heterostructures,Niobium(V) oxide

    更新于2025-11-14 17:03:37

  • Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film

    摘要: Aluminum-doped zinc oxide (AZO) thin films were prepared by radio frequency (RF) sputtering at room temperature, and then post-treated by hydrogen (H2) plasma at different durations. After H2 plasma treatment under the condition of 10 W, 200 °C and 3.0 Hours, the resistivity showed a dramatically decrease from 1.6 Ω cm to 3.4 × 10?3 Ω cm, while the transmittance at the wavelength of 550 nm was improved from 90.5% to 96.0%. The optical constants of H2 plasma-treated AZO thin films were detailed characterized by a varied angle spectroscopic ellipsometer. The results show that the refractive index n decreases in the entire measured wavelength range of 350–1100 nm, while the extinction coefficient k decreases in the short wavelength range and changes negligibly at the long wavelength range. These results can provide guidelines for the design and optimization of AZO thin film-based optoelectronic applications.

    关键词: Resistivity,Spectroscopic ellipsometer,Transmittance,Optical constants,Hydrogen plasma treatment,Aluminum-doped zinc oxide

    更新于2025-11-14 17:03:37