修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2018
研究主题
  • Display Metrology
  • dSiPM
  • Quanta Image Sensor
  • CMOS
  • QIS
  • Complementary Metal Oxide Semiconductor
  • Digital Silicon Photo-Multiplier
  • Single Photon Avalanche Diode
  • SPAD
应用领域
  • Optoelectronic Information Science and Engineering
机构单位
  • The University of Edinburgh
  • STMicroelectronics Imaging Division
1265 条数据
?? 中文(中国)
  • Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles

    摘要: In this work, a porous TiO2 photocatalyst derived from metal-organic framework MIL-125 was synthesized and tested for photocatalytic CO2 reduction with water. To improve the photocatalytic performance, innovative materials modifications were employed by decorating TiO2 with atomic layer deposited (ALD) MgO overcoating and photodeposited silver (Ag) nanoparticles at different orders: MgO deposition followed by Ag (i.e. Ag/MgO/TiO2), or Ag deposition followed by MgO (i.e. MgO/Ag/TiO2). The addition of Ag promoted transfer of photoinduced electrons, while the coating of an ultrathin MgO layer inhibited surface charge recombination and enhanced CO2 adsorption. The combination of MgO and Ag resulted in synergistic promotion on CO2 photoreduction greater than the sum of individual promotional effects. The Ag/MgO/TiO2 catalyst with 7 ALD-layers of MgO and 5% Ag was 14 times more active than the pristine TiO2 in terms of CO and CH4 production. In addition, the sequence of MgO/Ag decoration influenced the catalytic activity. The Ag/MgO/TiO2 catalysts were in general more active than the MgO/Ag/TiO2 counterparts, likely due to the different electron mobility and Ag nanoparticle distribution on the surface. This work for the first time reports the novel materials structure of ALD coated MgO and photodeposited Ag nanoparticles on TiO2, and it reveals the importance of optimizing materials morphology and structure to promote the catalytic activity.

    关键词: CO2 photoreduction,magnesium oxide,silver nanoparticles,atomic layer deposition,porous TiO2

    更新于2025-11-14 17:03:37

  • Tunable optical and magnetic properties of Ni-doped CuSe nanowires using AAO template assisted hydraulic method

    摘要: High uniformity of un-doped and Ni-doped CuSe nanowires have been fabricated through smelting the bulk and injecting the melted liquid into the anodic aluminum oxide (AAO) template. The Ni dopant concentration and morphology of CuSe nanowires can be well controlled via preparing the bulk materials and the channel size of AAO template. The cathodoluminescence (CL) peaks of the un-doped, 0.5 at% and 1.0 at% Ni-doped CuSe nanowires showed a redshift of about 26 nm and 42 nm from un-doped CuSe nanowires (579 nm), respectively. Furthermore, above room temperature ferromagnetism was observed in 1.0 at% Ni-doped CuSe nanowires at 300 K. The facile injection molding method fabricated nanowires with tunable optical and magnetic properties could be applied to prepare varied nanomaterials for spintronic devices in the further.

    关键词: optical,anodic aluminum oxide (AAO),CuSe,doped,nanowires,magnetic

    更新于2025-11-14 17:03:37

  • H2 Gas Sensor Based on Pd/ZnO Nanostructures Deposited on Tapered Optical Fiber

    摘要: A novel H2 sensor using tapered optical fiber coated with Pd/ZnO nanostructures have been developed. The ZnO nanostructures was synthesized and deposited onto tapered optical fiber via chemical bath deposition (CBD) method. The ZnO was characterized by FESEM, XRD and EDX to confirm the material properties. It was discovered that the sensor is sensitive towards different concentrations of H2 in synthetic air at 180oC of operating temperature. By varying the deposition time of ZnO coating, different thickness of ZnO layer can be obtained. It was observed that with 280 nm thickness, the maximum absorbance response can be achieved. Further investigation with sensor sample of as-prepared and annealed was carried out to study its sensing performance towards H2. The absorbance response of 280 nm thickness of annealed Pd/ZnO has increased 64% as compared to as-prepared Pd/ZnO upon 1% H2 exposure in the synthetic air when measured in the visible to near infra-red optical wavelength. It can be concluded that the Pd/ZnO optical fiber sensor with thickness around 280 nm provided better sensitivity in sensing H2 at 180oC as compared to other thicknesses investigated.

    关键词: Optical sensors,zinc oxide,sensing material

    更新于2025-11-14 15:30:11

  • Plasmonic MoO2 nanospheres assembled on graphene oxide for highly sensitive SERS detection of organic pollutants

    摘要: The molybdenum oxide and graphene oxide (MoO2/GO) nanocomposite has been fabricated via simple hydrothermal assisted synthesis using Mo and MoO3 as precursors. The MoO2 nanospheres with porous hollow structure are assembled onto GO nanosheets. Profiting from the plasmonic effects of MoO2 and synergistic effect of MoO2 and GO, this hybrid nanomaterial exhibits significantly enhanced surface enhanced Raman scattering (SERS) activity for organic pollutants. The detection limit for rhodamine 6G (R6G) is 1.0 × 10?9 M, and the maximum enhancement factor (EF) reaches up to 1.05 × 107, which is the best among the semiconductor-based SERS materials. For practical application, the MoO2/GO SERS substrates are also applied to detect Methylene blue (MB) in river water, and the detection limit (1.0 × 10?8 M) can be acquired. Pyrene is also chosen as probe molecule, and quantitative determination is achieved with detection limit of 1.0 × 10?7 M. These demonstrate the well feasibility for multi-molecule detection. Furthermore, the nanocomposite displays high stability, reproducible stability, and acid and alkali resistance.

    关键词: Organic pollutants,Plasmonic effect,SERS,Graphene oxide,Detection,MoO2

    更新于2025-11-14 15:27:09

  • Aluminum-Doped Zinc Oxide as Front Electrode for Rear Emitter Silicon Heterojunction Solar Cells with High Efficiency

    摘要: Transparent conductive oxide (TCO) layers of aluminum-doped zinc oxide (ZnO:Al) were investigated as a potential replacement of indium tin oxide (ITO) for the front contact in silicon heterojunction (SHJ) solar cells in the rear emitter configuration. It was found that ZnO:Al can be tuned to yield cell performance almost at the same level as ITO with a power conversion efficiency of 22.6% and 22.8%, respectively. The main reason for the slight underperformance of ZnO:Al compared to ITO was found to be a higher contact resistivity between this material and the silver grid on the front side. An entirely indium-free SHJ solar cell, replacing the ITO on the rear side by ZnO:Al as well, reached a power conversion efficiency of 22.5%.

    关键词: photovoltaics,silicon heterojunction,rear emitter,transparent conductive oxide

    更新于2025-11-14 15:25:21

  • Graphene oxide/ZnO nanorods/graphene oxide sandwich structure: The origins and mechanisms of photoluminescence

    摘要: In this paper, we present the structural and optical properties of Graphene oxide/ZnO nanorods/graphene oxide (GO/ZnO nanorods/GO) nanocomposites prepared via a hydrothermal method on Si (100) substrate. The X-ray diffraction measurements (XRD) confirm that the prepared samples are of hexagonal wurtzite structure with crystallite size around 50-60 nm. It was obvious from scanning electron microscopy (SEM) that by incorporating the ZnO nanorods between the inter-layer of GO confirmed the formation of sandwich-like nanocomposites structure. ZnO nanorods interaction with GO is displayed by the different vibrational frequencies in fourier transform infrared spectroscopy (FTIR). The UV-Vis spectrum reveals the strongest absorption was observed around 370 nm, while calculating optical band gap energy (Eg) of GO/ZnO NRs/GO was found to be 3.15 eV. The photoluminescence (PL) measurements indicates that the ZnO nanorods have a strong visible emission centered at 559 nm attributed to the presence of impurities in the form of oxygen vacancies. After the nanorods were covered with GO layers, the PL intensity of the nanocomposite is quenched and shifted due to charge-transfer process. Consequently, the obtained results may lead to better performance for the optoelectronic applications.

    关键词: ZnO nanorods,hydrothermal method,excitation effect,graphene oxide

    更新于2025-11-14 15:25:21

  • High-Mobility Inkjet-Printed Indium-Gallium-Zinc-Oxide Thin-Film Transistors Using Sr-Doped Al2O3 Gate Dielectric

    摘要: In this paper, we demonstrate high-mobility inkjet-printed indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) using a solution-processed Sr-doped Al2O3 (SAO) gate dielectric. Particularly, to enhance to the electrical properties of inkjet-printed IGZO TFTs, a linear-type printing pattern was adopted for printing the IGZO channel layer. Compared to dot array printing patterns (4 × 4 and 5 × 5 dot arrays), the linear-type pattern resulted in the formation of a relatively thin and uniform IGZO channel layer. Also, to improve the subthreshold characteristics and low-voltage operation of the device, a high-k and thin (~10 nm) SAO film was used as the gate dielectric layer. Compared to the devices with SiO2 gate dielectric, the inkjet-printed IGZO TFTs with SAO gate dielectric exhibited substantially high field-effect mobility (30.7 cm2/Vs). Moreover, the subthreshold slope and total trap density of states were also significantly reduced to 0.14 V/decade and 8.4 × 1011/cm2·eV, respectively.

    关键词: metal-oxide semiconductors,thin-film transistors,high-k dielectric,high mobility,inkjet printing

    更新于2025-11-14 15:19:41

  • Lossy Mode Resonance Generation by Graphene Oxide Coatings onto Cladding-Removed Multimode Optical Fiber

    摘要: In this work, we have studied the suitability of graphene oxide-based thin films to be not only excellent sensitive coatings but also lossy mode resonance (LMR)-generating materials. Thin films of graphene oxide (GO) and polyethylenimine (PEI) fabricated by means of layer-by-layer assembly were selected in this study. Two optical fiber devices with 8 and 20 bilayers of the LMR-generating coating were fabricated and characterized as refractometers. Both devices show no hysteresis and high sensitivity, improving previously reported values. This research opens very promising and exciting possibilities in the field of optical fiber sensors based on LMR, strategically including specific recognition groups to the device surface to exploit this high sensitivity for monitoring a range of target analytes. The carboxylate functional groups at the edges of the GO sheets should provide excellent attachment sites for the required coupling chemistry to realize such devices.

    关键词: optical fiber sensor,thin films,Dip-assisted layer by layer,lossy mode resonance,refractometer,graphene oxide

    更新于2025-11-14 15:19:41

  • Room Temperature Synthesis of Germanium Oxide Nanofilaments and Their Potential Use as Luminescent Self‐Cleaning Surfaces

    摘要: Germanium oxide nanofilaments (GNFs) have been synthesized under ambient conditions from the gas phase using germanium tetrachloride as a precursor. Non-crystalline GNFs synthesized by this procedure are 1-10 μm in length and 80-110 nm in diameter applying Droplet Assisted Growth and Shaping (DAGS) Chemistry. The relative humidity has been adjusted at various values in order to demonstrate the crucial role of humidity in the gas phase for the nanofilament synthesis. The novel GNFs show a strong luminescence emission in the ultra-violet and light blue region. In addition, a self-cleaning and superhydrophobic properties could be introduced in the luminescent GNF nanofilaments by simple treatment with silane molecules.

    关键词: silicone nanofilaments,chemical vapor deposition,DAGS chemistry,germanium oxide nanofilaments,self-cleaning surfaces

    更新于2025-11-14 15:18:02

  • Improvement of Sensing Performance of Impedancemetric C2H2 Sensor Using SmFeO3 Thin-Films Prepared by a Polymer Precursor Method

    摘要: A sensitive an impedancemetric acetylene (C2H2) gas sensor device could be fabricated by using perovskite-type SmFeO3 thin-film as a sensor material. The uniform SmFeO3 thin-films were prepared by spin-coating and focusing on the effects of polymer precursor solutions. The prepared precursors and thin-films were characterized by means of thermal analysis, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction analysis, scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that particle growth and increase in homogeneity of the prepared thin-film could be accelerated by the addition of acetyl acetone (AcAc) as a coordination agent in the polymer precursor solution. Moreover, the highly crystallized thin-film-based sensor showed good response properties and stabilities to a low C2H2 concentration between 0.5 and 2.0 ppm.

    关键词: polymer precursor,acetyl acetone,thin-film,gas sensor,acetylene,perovskite-type oxide,AC impedance

    更新于2025-11-14 15:15:56