修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photo-Electrochemical Water Splitting

    摘要: A significant methodology gap remains in the construction of advanced electrocatalysts, which has collaborative defective functionalities and structural coherence that maximizes electrochemical redox activity, electrical conductivity, and mass transport characteristics. Here, a coordinative self-templated pseudomorphic transformation of an interpenetrated metal organic compound network is conceptualized into a defect-rich porous framework that delivers highly reactive and durable photo(electro)chemical energy conversion functionalities. The coordinative-template approach enables previously inaccessible synthesis routes to rationally accomplish an interconnected porous conductive network at the microscopic level, while exposing copious unsaturated reactive sites at the atomic level without electronic or structural integrity trade-offs. Consequently, porous framework, interconnected motifs, and engineered defects endow remarkable electrocatalytic hydrogen evolution reaction and oxygen evolution reaction activity due to intrinsically improved turnover frequency, electrochemical surface area, and charge transfer. Moreover, when the hybrid is coupled with a silicon photocathode for solar-driven water splitting, it enables photon assisted redox reactions, improved charge separation, and enhanced carrier transport via the built-in heterojunction and additive co-catalyst functionality, leading to a promising photo(electro)chemical hydrogen generation performance. This work signifies a viable and generic approach to prepare other functional interconnected metal organic coordinated compounds, which can be exploited for diverse energy storage, conversion, or environmental applications.

    关键词: MOF,PBA,electrochemical and PEC water splitting,metal-organic

    更新于2025-09-23 15:21:21

  • Annealing Induced Oxygen Defects on Green Sonochemically Synthesized ZnO Nanoparticles for Photoelectrochemical Water Splitting

    摘要: Zinc oxide (ZnO) nanoparticles were prepared by a green process using a simple sonochemical method. The prepared nanoparticles were annealed at different annealing temperatures in order to determine the role of the annealing temperature on the structural, morphological and optical properties of the prepared material. The defects related photoluminescence properties of the ZnO nanoparticles are discussed in detail. X-ray photoelectron spectroscopy provided the information regarding the presence of the defects in the material. ZnO emission related to defect emission was observed to increase with annealing temperature upto 600°C and then decreased. These defects played a crucial role in the performance of the photo-electrochemical (PEC) activity. The PEC performance has increased with an increase in the amount of oxygen related defects present in the material due to annealing.

    关键词: PEC water splitting,Defects,XPS,Green chemistry,ZnO

    更新于2025-09-19 17:15:36

  • New Understanding of Crystal Control and Facet Selectivity of Titanium Dioxide Ruling Photocatalytic Performance

    摘要: Engineering crystals of titanium dioxide (TiO2) to expose with the most reactive facet has been proved to significantly improve the photocatalytic performance. While most of TiO2 with facets reported in the past were in a particle form, herein we directly grow TiO2 with arbitrarily tunable facets onto the transparent conductive substrate. This could reduce interparticle boundaries, and thus suppress charge recombination and facilitate more efficient charge transport compared to particle-assembled films. Combined systematic experimental and theoretical (Density Function Theory, DFT) studies reveal that fluoride ions (F-) and protons (H+) could play a synergistic role in controlling TiO2 crystals in the way that F- ions change the crystal phase of TiO2 to anatase with low-indexed facets, while H+ ions increase of {001}/{101} ratio. Moreover, the reductive and oxidative sites of facets are clearly elucidated by a selective photodeposition of noble metal and metal oxide. Different photocatalytic tests manifested that {001} facet, which is conventionally believed as the highest reactive facet, does not always show highest performance. On the other hand, the facets reactivity appeared to depend on the types of reactions (reduction or oxidation) and the co-existing synergy of facets. These findings would clarify the ambiguous understanding about the true factors controlling facets, the true order of reactivity of each facet that has still been controversial, and pave a way to improve both efficiency and selectivity of TiO2 in a wide variety of photocatalytic applications in the future.

    关键词: Facet Control,CO2 Photoreduction,TiO2,Crystal Growth,PEC Water Splitting

    更新于2025-09-19 17:15:36

  • Enhanced photoelectrochemical performance of NaNbO3 nanofibers photoanode coupled with visible-light active g-C3N4 nanosheets for water splitting

    摘要: Sodium niobate nanofibers (NaNbO3-NF) have been synthesized by hydrothermal technique and further coupled with visible light responsive graphitic carbon nitride (g-C3N4) nanosheets in the different concentration ratio of 2:1 (2-CN), 4:1 (4-CN) and 8:1 (8-CN). A significant improvement in the photoelectrochemical (PEC) performance of g-C3N4/NaNbO3-NF (4-CN) nanostructured photoanode as compared to bare NaNbO3 photoanode is observed. A current density of 12.55 mA cm?2 at 1 V with respect to Ag/AgCl reference electrode is achieved for g-C3N4/NaNbO3-NF (4-CN) photoanode which is ~3 times higher than the NaNbO3-NF photoanode. Also, as compared to NaNbO3-NF, g-C3N4/NaNbO3-NF (4-CN) nanocomposite photoanode showed ~3 times improvement in the incident photon-to-current conversion efficiency. The improvement in the PEC performance of visible light active g-C3N4/NaNbO3-NF (4-CN) nanocomposite is attributed to the improved photoresponse of NaNbO3-NF due to the coupling of g-C3N4 and formation of type-II heterojunction between them leading to the enhanced separation of the photogenerated charge carriers. A possible reaction mechanism for the improved photoelectrochemical water splitting performance has been proposed for g-C3N4/NaNbO3-NF (4-CN) photoanode.

    关键词: Photoelectrode,Nanocomposite,Heterojunction,g-C3N4/NaNbO3-NF,PEC Water Splitting

    更新于2025-09-12 10:27:22

  • Graphitic Carbon Nitride Impregnated Niobium Oxide (g-C <sub/>3</sub> N <sub/>4</sub> /Nb <sub/>2</sub> O <sub/>5</sub> ) Type (II) Heterojunctions and Its Synergetic Solar-Driven Hydrogen Generation

    摘要: Graphitic carbon nitride (g-C3N4) based catalysts are evolving in energy harvesting applications due to their robustness, nontoxicity, and most important photocatalytic efficiencies. In this work, we successfully engineered g-C3N4/Nb2O5 type (II) heterojunction via pulse sonochemical technique based on opposite charge-induced hetero-aggregation on the surface. The agglomerated spherical Nb2O5 nanoparticles (NPs) having diameter 30-40 nm observed on the lamellar surface of g-C3N4 in FESEM images. The XRD and XPS analysis confirm the orthorhombic phase and formation of the g-C3N4/Nb2O5 heterostructure. The FTIR spectra of g-C3N4/Nb2O5 show characteristic poly s-triazine bands from 1250 to 1650 cm-1. Moreover, g-C3N4/Nb2O5 exhibited the lower bandgap value of 2.82 eV as compared to Nb2O5 (3.25eV) with significant redshift and enhance visible light absorption. The Mott-Schottky (MS) analysis confirms the formation of heterojunction between g-C3N4 and Nb2O5, with significant band shifting towards lower hydrogen evolution reaction (HER) potential. The g-C3N4/Nb2O5 heterojunctions showed many folds enhanced photocurrent response from photoelectrochemical (PEC) water splitting, and the value reached to – 0.17 mA/cm2 with good stability and insignificant dark photocurrent at 1.0 V vs RHE. The electrochemical impedance spectroscopic (EIS) measurements further elucidate the suppression of photogenerated electrons/holes as the radius of the semicircle significantly decreased in case of heterojunction formation. The enhanced photocatalytic hydrogen generation by the heterostructures could be attributed to the effective formation of heterojunctions between the g-C3N4 and Nb2O5 semiconductors, causing the migration of the photogenerated electrons and holes, hence increasing their lifetimes.

    关键词: Pulse Sonication,PEC Water Splitting,g-C3N4,Photocurrent density,Nb2O5 NPs

    更新于2025-09-09 09:28:46