修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions

    摘要: Series–parallel module technology can meet a DC converter’s requirements of high-power, large-capacity, and high step-up ratio in photovoltaic a DC boost collection system. However, the cascaded structure has the problem of voltage and current sharing between modules, and due to the duty cycle limitation of converters, the combined converters in the PV-converter unit have an unbalanced voltage, which may also exceed the voltage range under partial shading conditions (PSCs). First, aiming at the problems of voltage sharing, current sharing, and low modularity in the combined converter, this paper proposes a distributed control strategy. Then, by adopting a coordinated control strategy based on the sub-module cutting in and out, the problem that the combined converter cannot normally boost under PSCs was solved. The paper not only takes the advantages of the cascade structure of the combined converter to increase the power and voltage, but also improves its modularity to solve the problem of abnormal operation under uneven irradiation. This dramatically improves the adaptability of combined converters in a photovoltaic DC collection system. Finally, a small power experiment was carried out, where the experimental results veri?ed the e?ectiveness of the control strategy.

    关键词: voltage-sharing and current-sharing control,partial shading conditions (PSCs),combined converter,photovoltaic DC boost collection system,coordinated control

    更新于2025-09-19 17:13:59

  • Implementation of a modified circuit reconfiguration strategy in high concentration photovoltaic modules under partial shading conditions

    摘要: A modified circuit reconfiguration (MCR) technique for high concentration photovoltaic (HCPV) modules under partial shading conditions (PSCs) is proposed. Although HCPV modules have high conversion efficiency, they are sensitive to changing environments, especially PSCs. In response, the MCR strategy exploits the reconfigurable wiring of HCPV modules to implement the dynamic circuit reconfiguration (DCR) technique. In doing so, the hardware switches and complex control algorithms of the conventional DCR are simplified to reduce cost. Moreover, an irradiation estimation method is proposed for string current equalization using existing switches and connections. Two circuit-model prototypes, one square and one rectangular, were simulated to evaluate the proposed MCR strategy. Evaluation results demonstrate that the average output-power and conversion-efficiency improvements of the square and rectangular modules were around 31.07% and 5.00%, and 32.79% and 5.23%, respectively, when compared with the original Series connection topology. In addition, after reconfiguration by MCR, the module’s GMPP power was improved and the number of LMPPs reduced, which simplified the P-V curves. Furthermore, reliability tests demonstrated that with a small reconfiguration processing time ratio (0.06–0.28%), the daily energy harvested from the rectangular module was improved around 15%. The proposed MCR strategy has the advantages of reducing the hardware/software costs and lowering circuit losses. Additionally, the MCR method can increase the output power and efficiency of an HCPV module with high dispersion ability. The proposed method and prototypes can also be extended to larger scale arrays or implemented with other PV systems.

    关键词: High concentration photovoltaic systems (HCPV),Maximum power point tracking (MPPT),Dynamic circuit reconfiguration,Partial shading conditions (PSCs)

    更新于2025-09-16 10:30:52

  • A hybrid intelligent GMPPT algorithm for partial shading PV system

    摘要: Maximum power extraction for PV systems under partial shading conditions (PSCs) relies on the optimal global maximum power point tracking (GMPPT) method used. This paper proposes a novel maximum power point tracking (MPPT) control method for PV system with reduced steady-state oscillation based on improved particle swarm optimization (PSO) algorithm and variable step perturb and observe (P&O) method. Firstly, the grouping idea of shuffled frog leaping algorithm (SFLA) is introduced in the basic PSO algorithm (PSO–SFLA), ensuring the differences among particles and the searching of global extremum. Furthermore, adaptive speed factor is introduced into the improved PSO to improve the convergence of the PSO–SFLA under PSCs. And then, the variable step P&O (VSP&O) method is used to track the maximum power point (MPP) accurately with the change of environment. Finally, the superiority of the proposed method over the conventional P&O method and the standard PSO method in terms of tracking speed and steady-state oscillations is highlighted by simulation results under fast variable PSCs.

    关键词: Variable step P&O (VSP&O),Global maximum power point tracking (GMPPT),Under partial shading conditions (PSCs),Particle swarm optimization (PSO),Photovoltaic (PV) system,Adaptive speed factor,Shuffled frog leaping algorithm (SFLA)

    更新于2025-09-10 09:29:36