- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Fill Factor Loss in Fielded Photovoltaic Modules Due to Metallization Failures, Characterized by Luminescence and Thermal Imaging
摘要: During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young’s modulus was calculated and its radial pro?le was correlated to the corresponding burnup pro?le and to the hardness radial pro?le data obtained by Vickers micro-indentation
关键词: Nuclear fuels,piezoelectric devices,Vickers microhardness,Young’s modulus,nuclear power
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - In-situ Microscopy Characterization of Cu(In,Ga)Se <sub/>2</sub> Potential-Induced Degradation
摘要: During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young’s modulus was calculated and its radial pro?le was correlated to the corresponding burnup pro?le and to the hardness radial pro?le data obtained by Vickers micro-indentation
关键词: Nuclear fuels,piezoelectric devices,Vickers microhardness,Young’s modulus,nuclear power
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC) - Xiamen, China (2019.7.5-2019.7.7)] 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC) - A Method for Generating Spray Trajectory of a Shoe Sole Based on Laser Vision
摘要: A ?rst proof-of-concept mm-sized implantable device using ultrasonic power transfer and a hybrid bi-directional data communication link is presented. Ultrasonic power transfer enables miniaturization of the implant and operation deep inside the body, while still achieving safe and high power levels (100 W to a few mWs) required for most implant applications. The current implant prototype measures 4 mm 7.8 mm and is comprised of a piezoelectric receiver, an IC designed in 65 nm CMOS process and an off-chip antenna. The IC can support a maximum DC load of 100 W for an incident acoustic intensity that is 5% of the FDA diagnostic limit. This demonstrates the feasibility of providing further higher available DC power, potentially opening up new implant applications. The proposed hybrid bi-directional data link consists of ultrasonic downlink and RF uplink. Falling edge of the ultrasound input is detected as downlink data. The implant transmits an ultra-wideband (UWB) pulse sequence as uplink data, demonstrating capability of implementing an energy-ef?cient M-ary PPM transmitter in the future.
关键词: piezoelectric receivers,bi-directional data communication,mm-sized implants,CMOS,ultrasonic power transfer,active recti?er,IMD,antennas,radio transmitters,AC-DC converter,implantable biomedical devices
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE International Symposium on Applications of Ferroelectrics (ISAF) - Lausanne, Switzerland (2019.7.14-2019.7.19)] 2019 IEEE International Symposium on Applications of Ferroelectrics (ISAF) - Vibrating Piezoelectric Energy Conversion Efficiency of Sol-Gel PZT Films with Various Crystal Orientations on MEMS Buckled Diaphragm Structures
摘要: Vibrating energy conversion efficiency was investigated on piezoelectric transducers fabricated on MEMS buckled diaphragm structures from the viewpoint of crystal orientation of sol-gel derived lead-zirconate-titanate (PZT) films. The crystal orientation dominates in-plane stress and spontaneous polarization direction of the PZT films. The in-plane stress affects the static buckling of the diaphragm where a large convex buckling results in a high mechanical conversion efficiency from the flexural vibration to the in-plain vibration. The polarization direction affects the intrinsic piezoelectric conversion efficiency. The crystal orientation of the sol-gel PZT was controlled through pyrolysis temperature between 250?C and 350?C, resulting in a texture variation from (100)-oriented films to (111)-oriented ones. Highly (111)-oriented films showed large polarizations but small buckling deflections, while highly (100)-oriented films showed vice versa. Intermediately textured films with 40–45% (111)-orientation index showed the highest conversion efficiency.
关键词: Piezoelectric,Sol-gel,Residual stress,Buckling,PZT,Polarization,Energy conversion,Diaphragm
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Rough and Straightforward Estimation of the Mismatching Loss by Partial Shading of the PV Modules Installed on an Urban Area or Car-Roof
摘要: During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young’s modulus was calculated and its radial pro?le was correlated to the corresponding burnup pro?le and to the hardness radial pro?le data obtained by Vickers micro-indentation
关键词: Nuclear fuels,piezoelectric devices,Vickers microhardness,Young’s modulus,nuclear power
更新于2025-09-19 17:13:59
-
Strain tunable quantum dot based non-classical photon sources
摘要: Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs. High photon quality and indistinguishability of photons from different sources are critical for quantum information applications. The inability to grow perfectly identical quantum dots with ideal optical properties necessitates the application of post-growth tuning techniques via e.g. temperature, electric, magnetic or strain fields. In this review, we summarize the state-of-the-art and highlight the advantages of strain tunable non-classical photon sources based on epitaxial quantum dots. Using piezoelectric crystals like PMN-PT, the wavelength of single photons and entangled photon pairs emitted by InGaAs/GaAs quantum dots can be tuned reversibly. Combining with quantum light-emitting diodes simultaneously allows for electrical triggering and the tuning of wavelength or exciton fine structure. Emission from light hole exciton can be tuned, and quantum dot containing nanostructure such as nanowires have been piezo-integrated. To ensure the indistinguishability of photons from distant emitters, the wavelength drift caused by piezo creep can be compensated by frequency feedback, which is verified by two-photon interference with photons from two stabilized sources. Therefore, strain tuning proves to be a flexible and reliable tool for the development of scalable quantum dots-based non-classical photon sources.
关键词: quantum dot,on-chip,piezoelectric crystal,entangled photons,fine structure splitting,strain tuning
更新于2025-09-19 17:13:59
-
Enhanced dielectric and piezoelectric properties in the [001]-poled 0.25Pb(In <sub/>1/2</sub> Nb <sub/>1/2</sub> )O <sub/>3</sub> -0.43Pb(Mg <sub/>1/3</sub> Nb <sub/>2/3</sub> )O <sub/>3</sub> -0.32PbTiO <sub/>3</sub> single crystal near morphotropic phase boundary by alternating current treatment
摘要: In this paper, temperature dependance of induced dielectric and piezoelectric properties in the [001]-oriented predirect current poling (DCP) of the 0.25Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (0.25PIN-0.43PMN-0.32PT) single crystals near morphotropic phase boundary was investigated using the alternating current treatment (ACT). By the optimized ACT conditions of 1 kV/mm at 50 Hz over 20 cycles, the dielectric permittivity (ε0) and piezoelectric coefficient (d33) at room temperature of the DCP-ACT crystal were improved to be 7120 and 2610 pC/N, which were 48% and 54% higher than that of the DCP crystal (ε0 = 4800, d33 = 1700 pC/N). Based on the temperature dependence of dielectric permittivity and dielectric loss of the DCP-ACT crystal, the induced monoclinic phases (MA and MC) were involved in the phase transition process from a rhombohedral phase to a tetragonal phase. The phase transition temperatures TR-MA of 116 °C of the DCP-ACT crystal showed about 10 °C higher than that of DCP. Meanwhile, ε0 of the DCP-ACT crystal at TR-MA and in the tetragonal phase region, at around 110 °C and 130 °C, were 160% and 390% higher than those of the DCP crystal, respectively. The ultrahigh ε0 = 17 000 of the DCP-ACT crystal at 130 °C may relate to the nanoscale heterogeneous polar-regions induced by ACT. The ACT is a promising way to enhance the dielectric and piezoelectric performance of the pre-DCP 0.25PIN-0.43PMN-0.32PT single crystals with broadened temperature range for device applications.
关键词: single crystal,piezoelectric properties,morphotropic phase boundary,alternating current treatment,dielectric properties
更新于2025-09-19 17:13:59
-
A method for determining the orientation of [011] poled relaxor ferroelectric single crystal disks
摘要: A new method for determining the crystal orientation of [011] poled relaxor ferroelectric single crystal (RFSC) disks has been developed. This Technical Note describes the measurement techniques and mathematical approaches associated with this new method, which is possible due to the anisotropic response of [011] poled single crystal disks. Experimentally, the disks are subject to a distributed edge load at a series of angular orientations, with the output voltage recorded at each orientation. Equations have been developed to govern a particle swarm to find an optimised fit to the experimental data yielding the crystal orientation of the disk which is required for practical applications. Approximate values for the piezoelectric charge constants d31, d32 are also determined. The method is demonstrated on a RFSC Mn-PMN-PZ-PT disk, comparing favourably with a synchrotron x-ray transmission diffraction study on the same disk.
关键词: particle swarm,piezoelectric charge constant,crystal orientation,single crystal,relaxor ferroelectrics
更新于2025-09-19 17:13:59
-
Modeling and stabilization of current-controlled piezo-electric beams with dynamic electromagnetic field
摘要: Piezoelectric materials can be controlled with current (or charge) as the electrical input, instead of voltage. The main purpose of this paper is to derive the governing equations for a current-controlled piezo-electric beam and to investigate stabilizability. The magnetic permeability in piezo-electric materials is generally neglected in models. However, it has a significant qualitative effect on properties of the control system such as stabilizability. Besides the consideration of current control, there are several new aspects to the model. Most importantly, a fully dynamic magnetic model is included. Also, electrical potential and magnetic vector potential are chosen to be quadratic-through thickness to include the induced effects of the electromagnetic field. Hamilton’s principle is used to derive a boundary value problem that models a single piezo-electric beam actuated by a current (or charge) source at the electrodes. Two sets of decoupled system of partial differential equations are obtained; one for stretching of the beam and another one for bending motion. Since current (or charge) controller only affects the stretching motion, attention is focused on control of the stretching equations in this paper. It is shown that the Lagrangian of the beam is invariant under certain transformations. A Coulomb type gauge condition is used. This gauge condition decouples the electrical potential equation from the equations of the magnetic potential. A semigroup approach is used to prove that the Cauchy problem is well-posed. Unlike voltage actuation, a bounded control operator in the natural energy space is obtained. The paper concludes with analysis of stabilizability and comparison with other actuation approaches and models.
关键词: Piezoelectric,distributed parameter system,charge actuation,current actuation,induced voltage,partial differential equations,control,stabilization,electromotive force
更新于2025-09-19 17:13:59
-
Revisiting the electroelastic solution for an FGPM thick-walled cylinder subjected to mechanical and electric loadings
摘要: Theoretical analysis for an empty thick-walled FGPM cylinder exposed to electric and mechanical loadings are investigated. The cylinder is a composite material composed of PZT4 and PVDF and the volume fraction of PZT4 is given by the power law with three controllable parameters which can cover more complex circumstances. The hypergeometric equation of the radial displacement is acquired by utilizing the Voigt method, and the solutions of the stresses and the electric potential are obtained after solving the radial displacement. The method in this paper is appropriate for real functionally graded piezoelectric materials and can avoid assumptions about unknown overall material parameters appeared in previous references. Finally, the impacts of the parameter n in volume fraction of FGPM cylinder on mechanical and electric behaviors are examined. Furthermore, the distinction between the hoop stress and radial stress is discussed to decrease the pressure concentration in FGPM cylinder.
关键词: thick-walled cylinder,functionally graded piezoelectric materials,electric potential,electroelastic solution
更新于2025-09-16 10:30:52