- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ablation of piezoelectric polyvinylidene fluoride with a 193 nm excimer laser
摘要: The unique flexible and piezoelectric properties of polyvinylidene fluoride (PVDF) films would allow for new applications for integrated bioelectronic devices. The use of these films has been precluded by the difficulty in machining them into small, discrete features without damaging the properties of the material. The etching of piezoelectric PVDF by means of a 193 nm excimer laser is explored and characterized. Etch rates are shown for common laser fluence values, along with images of the quality of the cuts to provide the reader with an understanding of the compromise between etch rate and edge roughness. The authors describe a novel method for the etching of piezoelectric, β-phase PVDF. While PVDF is flexible, acoustically matched to biological tissue, and has a wide resonance bandwidth, it is often overlooked as a piezoelectric material for micro-electrical-mechanical-system devices because of the difficulty in fabrication. In this paper, the authors characterize the etch rate and quality while using a 193 nm argon fluoride excimer laser for patterning.
关键词: excimer laser,etching,piezoelectric,ablation,PVDF
更新于2025-09-23 15:21:01
-
[IEEE 2019 Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC) - Orlando, FL, USA (2019.4.14-2019.4.18)] 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC) - Support Transducer Enabled Single Resonator Channel Select Filter
摘要: In this work, we report a piezoelectric channel select filter design using a single resonator which utilizes Thin Piezo on Substrate (TPoS) transducer uniquely positioned so as to drive the central bulk Single Crystal Silicon (SCS) into resonance. Here, the support transducers operate in a combined length extension and an in-plane shear mode. A short connector between transducers and central SCS is used to create a frequency split to realize the filter. The device is fabricated using MEMSCAP Inc. AlN-on-silicon platform. A differential drive and single port sense method was employed to realize the narrow bandwidth (NBW) filter with a reduced feedthrough level. As a result, we demonstrate a 20.62 MHz TPoS MEMS filter with an extremely flat passband and a tiny bandwidth of 18 kHz (0.087% BW), a 4dB Insertion Loss with a 39dB Stop Band Rejection and less than 0.1dB passband ripple.
关键词: Channel select filter,differential,piezoelectric,narrow bandwidth,TPoS,support transducer
更新于2025-09-23 15:21:01
-
Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach
摘要: The state-space approach is developed to analyze the dynamic behaviors of a multilayered two-dimensional piezoelectric quasicrystal circular cylinder filled with the compressible fluid. With simple support at both ends, the hollow cylindrical shell has imperfect bonding between the layers. The analytical solution of a homogeneous cylindrical shell has been derived based on the state equations. The general solution for the corresponding multilayered case is also obtained by utilizing the propagator matrix method. The numerical results present the natural frequencies in free vibration with different length-to-radius and radius-to-thickness ratios. The critical load and dynamic behaviors of the model are exactly predicted in the axial buckling problem. For the impulse case, the influences of the density of the filled fluid and coefficients of interfacial imperfections on the dynamic responses are also discussed.
关键词: Multilayered piezoelectric quasicrystal,Compressible fluid,State-space approach,Dynamic analysis,Imperfect bonding
更新于2025-09-23 15:21:01
-
Strategies to Achieve High Performance Piezoelectric Nanogenerators
摘要: Piezoelectric nanogenerators have attracted much attention in the past decade. In this study, the development of piezoelectric nanogenerators and their progress toward high power generation is discussed. The characteristics and application range of numerous types of piezoelectric nanogenerators are also considered. In addition, several strategies that may improve the performance of piezoelectric nanogenerators are summarized. Here, we compare the open circuit voltages and short circuit currents of various piezoelectric nanogenerators under different factors, and the current problems of piezoelectric nanogenerators are also discussed. Finally, the future prospects and directions of piezoelectric nanogenerators are predicted. Future studies should be focused on the production of high-performance materials, the establishment of working principle and simulation model, the integration of nanogenerator, and the design of the energy harvesting circuit. Hence, it is emergency to search for functional materials with high piezoelectricity and further improve the electromechanical properties of existing piezoelectric materials. Moreover, further research is needed to increase the stability and flexibility of composite materials, to develop wearable and embedded flexible functional devices based on the biocompatibility of inorganic nanoparticles, and to supply power for microelectronic systems.
关键词: BaTiO3,Piezoelectric nanogenerators,Composite thin film materials,PVDF,Chemical doping,Nanostructure
更新于2025-09-23 15:21:01
-
[ASME ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Quebec City, Quebec, Canada (Sunday 26 August 2018)] Volume 8: 30th Conference on Mechanical Vibration and Noise - Piezoelectric Nonlinear Energy Sink for Energy Harvesting With Rectifying DC Interface Circuit
摘要: In order to improve the performance of vibration energy harvesters over a broad frequency range, this paper proposes a use of piezoelectric nonlinear energy sink (NES) for energy harvesting from ambient vibrations. A standard rectifying direct current (DC) interface circuit is considered to generate DC power from the piezoelectric NES under harmonic excitation. Harmonic balance method is used to obtain the dynamic response and energy harvesting performance of the proposed piezoelectric NES, verified by the equivalent circuit simulation. Analytical and numerical results show that the design, by applying NES, improves the efficiency of energy harvesting without increasing the vibration of the primary structure in a broadband manner. The effects of the electromechanical coupling, excitation level and load resistance on the magnitude and bandwidth of the output DC power are investigated.
关键词: harmonic excitation,rectifying DC interface circuit,piezoelectric,energy harvesting,nonlinear energy sink
更新于2025-09-23 15:21:01
-
<i>(Invited)</i> Fluid Spectroscopy with Piezoelectric Ultrasound MEMS Transducers
摘要: In this work, Piezoelectric Micromachined Ultrasound Transducers (PMUTs) are explored as a potential MEMS solution for fluid property monitoring. PZT based PMUTs fabricated with three different diameters—1000 μm, 500 μm, 250 μm—showing in-air resonant frequencies between 100 kHz to 2 MHz are tested in water-glycerol mixtures with glycerol concentrations varying between 0% to 80% in both static and dynamic conditions. Spectral shifts of fluid environment are PMUT vibrations with changing quantitatively related to the density and viscosity of the fluid. The density sensitivity of the PMUTs is found to increase from 27 Hz/kg.m-3 for 1000 μm to 365 Hz/kg.m-3 for 250 μm, which is in close agreement with theoretical expectations. Similarly, viscosity sensing is also explored using PMUT arrays. A through-the-fluid ultrasound transmission architecture is proposed for a potential fluid property sensor that can fill the gap of miniature sensors for sensing physical properties of various fluids.
关键词: fluid property monitoring,viscosity,density,Piezoelectric Micromachined Ultrasound Transducers,PMUTs
更新于2025-09-23 15:21:01
-
Novel report on structural, optical and electrical investigation into brucinium 4-methyl-3-nitrobenzoate 0.5 hydrate single crystal: a promising material for high-power laser, ultrahigh cooling, sensor and detector applications
摘要: A new brucinium 4-methyl-3-nitrobenzoate 0.5 hydrate (B4M3NB0.5H) NLO single crystal was harvested from saturated solution by solvent evaporation method. Crystal system and symmetric type of B4M3NB0.5H compound were analyzed by structure analysis. Linear optical parameters of title compound were discussed in detail by UV–visible analysis. Lifetime values of the molecule were quanti?ed by ?uorescence study, and it con?rms the good crystalline perfection of the grown crystal. The SHG ef?ciency is 5.11 times superior to the KDP material. By utilizing Nd:YAG laser as an input, SLDT measurement of the crystal was done. The grown crystal has good crystalline nature which is analyzed by HRXRD study. Dielectric behavior of B4M3NB0.5H crystal was discussed in detail. With the help of theoretical approach, few of the solid-state parameters were calculated and listed. Piezoelectric charge coef?cient and piezovoltage were calculated to be 4.5 p C/N and 0.0417 p V m/N, respectively. The TGA and DTA spectrum con?rms that the title compound is thermally stable up to 101 °C.
关键词: piezoelectric charge coefficient,brucinium 4-methyl-3-nitrobenzoate,fluorescence study,solvent evaporation method,SHG efficiency,HRXRD study,NLO single crystal,Nd:YAG laser,dielectric behavior,UV–visible analysis,TGA and DTA spectrum
更新于2025-09-23 15:21:01
-
Magneto-Electric Effect on Guided Waves in Functionally Graded Piezoelectric–Piezomagnetic Fan-Shaped Cylindrical Structures
摘要: Functionally graded piezoelectric–piezomagnetic (FGPP) material simultaneously consists of piezomagnetic and piezoelectric phases, which are able to convert energy among mechanical, electric, and magnetic fields. The magneto-electric effect on waves in FGPP fan-shaped cylindrical structures is studied by exploiting the double Legendre orthogonal polynomial method. By means of the Heaviside function, the initial conditions are brought into wave motion equations. Dispersion properties, electric and magnetic potential, and the Poynting vector are calculated. Subsequently, the effect of the graded variation and geometric size on wave characteristics is analyzed. The FGPP fan-shaped cylindrical structures are of complex geometrical shape and material inhomogeneity, so their influences on the magneto-electric effect are the focus of discussion. Results reveal that the cut-off frequencies have a negative relationship with the cross-section area of the structure. The magneto-electric effect could be adjusted via altering the geometric size of the cross-section. These results can be utilized to design and optimize piezoelectric–piezomagnetic fan-shaped transducers.
关键词: dispersion curves,the Poynting vectors,functionally graded piezoelectric–piezomagnetic material,magneto-electric effect,fan-shaped cross-section
更新于2025-09-23 15:21:01
-
Tunable thermo-piezo-plasmonic effect on core/shell nanoparticles under laser irradiation and external electric field
摘要: This work is focused on the characterization of the opto-heating generation in thermo-piezo-plasmonic solutions of gold-PbZrTiO3 (PZT) core/shell nanoparticles. Core/shell nanoparticles have been prepared by the laser ablation in liquid method. Linear and nonlinear optical properties of proposed nanoparticles were studied by optical spectroscopy and the Z-scan technique under external voltage to investigate the piezo-photonic effect. Furthermore, the linear optical properties of these nanostructures were calculated vie dipole approximation method with different core size and different shell thickness of samples immersed in water and poly-vinyl-pyrrolidone. In addition, thermo-plasmonic effects of samples are investigated theoretically and experimentally by the finite element method of COMSOL multiphysics V5.4 and infrared camera under laser irradiation and external electric field. The results revealed a clear tunable and adjustable linear and nonlinear behavior and thermo-piezo-plasmonic properties under external effects. The temperature elevation is ranging of ?T = 3.7–14.1 °C under different external effects. Accordingly, these results encourage to uses proposed samples for the cancer treatment and the different biomedical applications.
关键词: Nonlinear refractive index,External electric field,Core/shell NPs,Laser irradiation,Thermoplasmonic,Piezoelectric,Z-scan technique,Schottky barrier
更新于2025-09-23 15:21:01
-
Monitoring of the Ceramic Kerf During the Laser Cutting Process through Piezoelectric Transducer
摘要: Advanced ceramics are widely used in industry due to their unique properties. However, the machining of ceramic components by conventional methods is difficult due to their high level of hardness and brittleness. In this sense, laser beam machining (LBM) is presented as an alternative to conventional methods, enabling the machining of workpieces through more accurate and less invasive techniques. Despite the advantages of laser machining, the process still needs to be studied in detail, as advanced ceramic machining is considered a stochastic process. Thus, real-time monitoring systems are required in order to optimize the ceramic laser machining. Therefore, this paper proposes a novel method for monitoring the cutting kerf in the laser cutting process of ceramic components using a low-cost piezoelectric transducer (PZT) and digital signal processing. Tests were performed on the surface of an alumina ceramic workpiece under different machining conditions. The cutting kerf was measured by a digital microscope and the raw signals from the PZT transducer were collected at a sampling rate of 2 MHz. Time domain and frequency domain analyses were performed in order to find a frequency band that best correlates with the process conditions. Finally, a linear regression was calculated in order to correlate the PZT signal and the measured kerf. The results showed that the piezoelectric transducer was sensitive to the acoustic activity generated during the process, allowing the real-time monitoring of the cutting kerf. Thus, the approach proposed in this paper can be used efficiently in the monitoring of the laser cutting process.
关键词: monitoring,digital signal processing,ceramic,laser machining,piezoelectric transducer
更新于2025-09-23 15:21:01