修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Flexible electrochromic tungsten/iron mixed oxide films synthesized by an atmospheric pressure plasma jet

    摘要: Flexible electrochromic organo-tungsten- iron oxide (WFexOyCz) films are rapidly deposited onto flexible (60 Ω/□ polyethylene terephthalate/indium tin oxide; PET/ITO) substrates by a low temperature-atmospheric pressure-plasma polymerization method with an atmospheric pressure plasma jet (APPJ) for a short exposed duration of 48 s. The precursor vapors of tungsten hexacarbonyl [W(CO)6] and biscyclopentadienyl iron [ferrocene; Fe(C5H5)2] are mixed with O2 gases at various gas flow rates, injected into air plasma jet and sprayed onto PET/ITO substrates at room temperature (~23oC) and at atmospheric pressure (1.013 × 105 Pa). Flexible electrochromic WFexOyCz films are synthesized with a specific addition of oxygen gases with superior lithium electrochromic properties as demonstrated by a potential sweep alternating between -1 V and 2 V at a scan rate of 40 mV/s in a 1 M LiClO4-propylene carbonate electrolyte. With amorphous WFexOyCz films produced with an APPJ by adding oxygen gases at a specific flow rate of 0.5 sccm, a high value in oxygen deficiency up to 0.189 allows more Li+ ions to intercalate into and deintercalate out of the film. Significant coloration and bleaching are proven by the high values in optical transmittance modulation (ΔT) of up to 70.3%, optical density (ΔOD) up to 0.77 and color efficiency (η) up to 61.3 cm2/C, at a wavelength of 800 nm, respectively.

    关键词: Electrochromic materials,Iron oxide,Tungsten oxide,Flexible electrochromic film,Atmospheric pressure plasmas,Plasma polymerization

    更新于2025-09-23 15:21:21

  • Structure and Stability of C:H:O Plasma Polymer Films Co-Polymerized Using Dimethyl Carbonate

    摘要: C:H:O plasma polymer ?lms (PPFs) were deposited by means of plasma-enhanced chemical vapour deposition using the non-toxic, biodegradable organic compound dimethyl carbonate (DMC) at various plasma powers and pressures in order to control the degradation properties related to the carbonate ester group. Coating properties using pure DMC monomer vapours were compared to co-polymerized ?lms from gaseous mixtures of DMC with either ethylene (C2H4) or carbon dioxide (CO2) affecting deposition rate and chemical composition. C:H:O ?lm properties were found to depend primarily on the amount of oxygen in the plasma. To investigate the PPF stability during aging, changes in the composition and properties were studied during their storage both in air and in distilled water over extended periods up to 5 months. It was shown that aging of the ?lms is mostly due to oxidation of the plasma polymer matrix yielding slow degradation and decomposition. The aging processes and their rate are dependent on the intrinsic amount of oxygen in the as-prepared C:H:O ?lms which in turn depends on the experimental conditions and the working gas mixture. Adjustable ?lm properties were mainly attained using a pure DMC plasma considering both gas phase and surface processes. It is thus possible to prepare C:H:O PPFs with controllable degradability both in air and in water.

    关键词: plasma polymerization,aging,degradability,thin ?lms,chemical composition

    更新于2025-09-09 09:28:46