- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Optimal photonic indistinguishability tests in multimode networks
摘要: Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity. Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices. It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources. Our approach employs the total variation distance to find those transformations that minimize the error probability in discriminating the behaviors of distinguishable and indistinguishable photons. In particular, we show that so-called Sylvester interferometers are near-optimal for this task. By using Bayesian tests and inference, we numerically show that Sylvester transformations largely outperform most Haar-random unitaries in terms of sample size required. Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3D integrated circuits in the single- and multiple-source cases. We then discuss the extension of this approach to a larger number of photons and modes. These results open the way to the application of Sylvester interferometers for optimal assessment of multiphoton interference experiments.
关键词: Sylvester interferometers,Particle indistinguishability,Quantum statistics,Optical quantum computation,Multiphoton interference experiments,Bayesian tests,Quantum simulation
更新于2025-09-23 15:23:52
-
Simulating vibronic spectra via Matsubara-like dynamics: Coping with the sign problem
摘要: Measuring vibronic spectra probes dynamical processes in molecular systems. When interpreted via suitable theoretical tools, the experimental data provides comprehensive information about the system in question. For complex many-body problems, such an approach usually requires the formulation of proper classical-like approximations, which is particularly challenging if multiple electronic states are involved. In this work, we express the imaginary-time shifted time correlation function and, thus, the vibronic spectrum in terms of the so-called Matsubara dynamics, which combines quantum statistics and classical-like dynamics. By applying the Matsubara approximation in the adiabatic limit, we derive a formal generalization of the existing Matsubara dynamics formalism to multiple potential energy surfaces (PESs), which, however, does not feature all the defining properties of its single-PES counterpart though suffering equally from the sign problem. The mathematical analysis for two shifted harmonic oscillators suggests a new modified method to practically simulate the standard correlation function via Matsubara-like dynamics. Importantly, this modified method samples the thermal Wigner function without suffering from the sign problem and yields an accurate approximation to the vibronic absorption spectrum, not only for the harmonic system but also for the anharmonic one.
关键词: classical-like dynamics,Matsubara dynamics,vibronic spectra,quantum statistics,potential energy surfaces,thermal Wigner function,sign problem
更新于2025-09-10 09:29:36