修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Rare earth-free composites of carbon dots/metal-organic framework as white light-emitting phosphor

    摘要: Over the last few years, numerous efforts have been made to develop white light-emitting metal-organic frameworks (MOFs), due to the useful features of MOFs such as ultrahigh surface areas and tunable pore architecture. However, rare earth (RE) ions are most commonly applied as phosphors in these materials so far, raising device cost and environmental concerns. Here, we designed a new type of RE-free material capable of white light-emission upon excitation at 365 nm, with the photoluminescence quantum yield in solid state reaching 37%, fabricated by compositing carbon dots (CDs) with Zr(IV)-based MOF. WLEDs constructed by depositing the CDs/Zr-MOF nanocomposite on a commercial UV LED chip feature a CIE chromaticity coordinate at (0.31, 0.34), high color rendering index (CRI) of 82, and luminous efficiency of 1.7 lm/W.

    关键词: carbon dots,rare-earth-free luminophores,white-light-emission,Zr-MOFs,down-conversion LEDs

    更新于2025-09-19 17:15:36

  • A New Co-Substitution Strategy as a Model to Study a Rare-Earth-Free Spinel-Type Phosphor with Red Emissions and Its Application in Light-Emitting Diodes

    摘要: The substitution of metal sites in Mg2TiO4 substrate leads to charge imbalance that will be closely related to a variety of changes including lattice structure, cell distortion, and photophysical properties. Herein, the co-substitution strategy of [Ga3+?Ga3+] for [Mg2+?Ti4+] and Sn4+ for Ti4+ achieves for the first time the novel Mg3Ga2SnO8 (MGS):xMn4+ (x = 0?3%) phosphors with efficient red emissions. In terms of X-ray powder diffraction (XRD) and Rietveld refinement analysis, MGS:Mn4+ possesses a structure isotypic of Mg2TiO4 in the cubic space group Fd3?m (227). There are two types of octahedra for Mn4+ ions in this structure, where Ga3+ ions completely occupy a group of octahedral sites and Mg2+/Sn4+ has been randomly distributed over another group of octahedral sites. A strong excitation band in the broad spectral range (220?550 nm) has been identified, thus facilitating the commercial uses for blue LED chips excitation. An intense red emission band at 680 nm has been observed due to the characteristic 2Eg?4A2g transition of Mn4+ ions. A concentration quenching effect occurs when the Mn4+ content exceeds 1.5%, and the quenching mechanism is demonstrated to be dipole?quadrupole interactions. Temperature-dependent luminescence measurements support its good thermal stability, and the corresponding activation energy Ea is determined to be 0.2552 eV. The possible luminous mechanism of the Mn4+ ion is explained by the Tanabe?Sugano energy level diagram. The crystal field strength and the Racah parameters together with the nephelauxetic ratio are also determined for Mn4+ in the MGS lattice. High color rendition warm white-light-emitting diodes (WLEDs) based on the optimal phosphor MGS:1.5%Mn4+,1.5%Li+ possess a color rendering index and color temperature of 85.6 and 3658 K, respectively. Its feasibility for application in solid-state white lighting has been verified.

    关键词: Co-substitution strategy,Light-emitting diodes,Red emissions,Spinel-type phosphor,Rare-earth-free

    更新于2025-09-12 10:27:22

  • Color tunable emission from CaS:Cu+, Mn2+ rare-earth-free phosphors prepared by a simple carbon-thermal reduction method

    摘要: Photoluminescence properties of CaS:Cu+, CaS:Mn2+ and CaS:Cu+, Mn2+ rare-earth-free phosphors prepared by a carbon-thermal reduction method were investigated. The emission spectrum of Cu+-doped CaS consists of two overlapped bands peaking at 415 nm (attributed to isolated Cu+ activator) and 475 nm (attributed to aggregated Cu+ center). The influence of Cu+ doping concentration on the emission spectrum is discussed. The emission spectrum of Mn2+-doped CaS exhibits a band emission peaking at 568 nm under 250 nm excitation. The emission spectra of the doubly activated CaS:Cu+, Mn2+ phosphors consist of Cu+ and Mn2+ emissions simultaneously, and their shapes depend strongly on the Mn2+ concentration. Based on the emission and excitation spectra of the CaS:0.15 mol%Cu+, xMn2+ phosphors, the energy transfer from Cu+ to Mn2+ takes place. The emitting colors of the doubly activated phosphors can also be tuned. In particular, the emitting color of CaS:0.15 mol% Cu+, 0.6 mol % Mn2+ sample is close to white light.

    关键词: Carbon-thermal reduction method,Photoluminescence,CaS:Cu+, Mn2+,Rare-earth-free phosphor

    更新于2025-09-09 09:28:46