修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
研究主题
  • tabu search
  • resources scheduling
  • genetic algorithm
  • niche
  • Data relay satellite
应用领域
  • Optoelectronic Information Science and Engineering
机构单位
  • National University of Defense Technology
47 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Efficient Heterojunction Thin Film CdSe Solar Cells Deposited Using Thermal Evaporation

    摘要: This paper considers an energy-limited cognitive relay network, where a secondary transmitter (ST) assists to forward the traf?c from a primary transmitter (PT) to a primary receiver (PR), in exchange for serving its own secondary receiver (SR) in the same frequency. The multiple-antenna ST is assumed to be energy-constrained and powered by both information ?ow from source (PT) and dedicated energy streams from destinations (PR and SR), which is called a destination-aided wireless power transfer (DWPT) scheme. Then, the relay processing matrix, cognitive beamforming vector, and power splitter are jointly designed to maximize the rate of secondary users under the energy causality constraint and the constraint that the demanded rate of primary users is satis?ed. For the perfect channel state information (CSI) case, by adopting the semi-de?nite relax technique and the Charnes–Cooper transformation, the global optimal solution is given. To reduce the complexity, matrix decomposition, zero forcing scheme, and dual method are jointly employed to derive a suboptimal solution. For the imperfect CSI case, the S-procedure is used to transform the worst case robust problem into a tractable semi-de?nite program. Simulation results reveal that our proposed DWPT scheme is greatly preferred for both perfect and imperfect CSI cases when ST is close to PR/SR.

    关键词: cognitive relay networks,power splitting,Wireless power transfer,semi-de?nite program,beamforming design

    更新于2025-09-23 15:19:57

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Frequency Conversion of Broadband mid-IR Carbon Monoxide Laser Radiation into THz Range

    摘要: Energy savings optimization becomes one of the major concerns in the wireless sensor network (WSN) routing protocol design, due to the fact that most sensor nodes are equipped with the limited nonrechargeable battery power. In this paper, we focus on minimizing energy consumption and maximizing network lifetime for data relay in one-dimensional (1-D) queue network. Following the principle of opportunistic routing theory, multihop relay decision to optimize the network energy efficiency is made based on the differences among sensor nodes, in terms of both their distance to sink and the residual energy of each other. Specifically, an Energy Saving via Opportunistic Routing (ENS_OR) algorithm is designed to ensure minimum power cost during data relay and protect the nodes with relatively low residual energy. Extensive simulations and real testbed results show that the proposed solution ENS_OR can significantly improve the network performance on energy saving and wireless connectivity in comparison with other existing WSN routing schemes.

    关键词: one-dimensional (1-D) queue network,wireless sensor network (WSN),Energy efficiency,opportunistic routing,relay node

    更新于2025-09-23 15:19:57

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Ge-On-Si High Efficiency Spads at 1310 Nm

    摘要: In this correspondence, we investigate the performance of a multi-cell multiple-input multiple-output downlink (DL) system aided by base station (BS) cooperation, relay cooperation, and polarization-multiplexing (PM). Triply-polarized antennas that are employed at the BSs, relays, and mobile stations (MSs) to conceive PM serve as an replacement for multiple uni-polarized antennas that in?ict space limitation. In a multi-user multi-cell relay-aided scenario, MSs and relays con?ict multi-user interference (MUI) as well as inter-cell or co-channel interference (CCI). Furthermore, the MSs experience intra-relay interference and inter-relay interference. In this paper, both the MUI and CCI at the relays are completely removed by the combined preprocessing operated at the BS. Similarly, the intra-relay and inter-relay interference are eliminated with the aid of the joint preprocessing operated at the relays. Speci?cally, in this contribution, the performance of the considered system is investigated when the channel state information (CSI) required at the BSs to implement the joint preprocessing suffers from feedback and back-haul delays. In our contribution, feedback channels that convey the CSI to the BSs endure noise and fading as well. Our simulation study demonstrates that the use of triply polarized antennas in combination with joint preprocessing at the BSs and relays can be regarded as an ef?cient technique for the cooperative multi-cell DL system to deal with the space constraints and the aforementioned interferences. Furthermore, the considered preprocessing results in superior symbol-error-rate performance compared with other preprocessing approaches.

    关键词: inter-relay interference,MIMO,intra-relay interference,multi-user interference,polarization-multiplexing,Co-channel interference,noisy feedback

    更新于2025-09-19 17:13:59

  • [IEEE 2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC) - Xiamen, China (2018.8.10-2018.8.12)] 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC) - Method on 3D Reconstruction of Airline Baggage Based on Active Laser Projection of Improved Encoding

    摘要: Cooperative communication suffers from multiplexing loss and low spectral efficiency due to the half duplex constraint of relays. To improve the multiplexing gain, successive relaying, which allows concurrent transmission of the source and relays, has been proposed. However, the severe inter-relay interference becomes a key challenge. In this paper, we propose a channel aware successive relaying protocol, also referred to as CAO-SIR, which is capable of thoroughly mitigating inter-relay interference by carefully adapting relays’ transmission order and rate. In particular, a relay having a poorer link to the source is scheduled first to forward a message, the data rate of which is adapted to the link quality of the source-relay and relay-destination channels. By this means, each relay may decode the messages intended for the preceding relays, and then cancel these relays’ interference in a low complexity which is equal to that of Decision Feedback Equalizer (DFE). To further optimize and analyze CAO-SIR, we present its equivalent parallel relay channel model, based upon which the adaptive relay selection and power allocation schemes are proposed. By employing M half duplex relays, CAO-SIR is capable of achieving an diversity-multiplexing tradeoff (DMT) given by 1 ? M +2 and r denote the diversity and multiplexing gains, respectively. Its DMT asymptotically approaches the DMT upper bound achieved by (M + 1) × 1 MISO systems or M full duplex relays, when M is large.

    关键词: rate adaptation,Successive relaying,water filling,opportunistic communications,diversity-multiplexing tradeoff,relay selection,interference cancellation,power allocation,relay ordering

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Magnetic Field Imaging: Strengths and limitations in characterising solar cells

    摘要: This paper concerns with a relay-aided massive multiple input multiple output (MIMO) cellular network. The exact closed-form expressions of both spectral ef?ciency (SE) and energy ef?ciency (EE) are obtained for downlink single-cell multi-user multi-relay massive MIMO transmission in the pilot-contaminated regime, where the number of users is larger than the pilot sequence length. Based on the theoretical results of SE and EE, we investigate the effects of some system parameters [such as number of antennas at the base station (BS), transmit power at the BS, and transmit power of each relay station (RS)] on system performance, and achieve the tradeoff between SE and EE by power control. Speci?cally, the tradeoff problem is solved by joint optimization over transmit power P of the BS and transmit power pr of each RS, so as to maximize EE while satisfying the SE requirement. With the proposition that EE function is strictly quasi-concave with either P or pr , we propose two optimization methods: 1-D searching and alternate optimization. Comparatively, the former achieves a better performance, while the latter has a lower complexity. Simulation results validate the effectiveness of the two methods.

    关键词: spectral ef?ciency,Cellular networks,massive MIMO,relay,energy ef?ciency

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE International Conference on Mechatronics and Automation (ICMA) - Tianjin, China (2019.8.4-2019.8.7)] 2019 IEEE International Conference on Mechatronics and Automation (ICMA) - Research on Optical Fiber IMU Signal Processing Based on Wavelet Algorithm

    摘要: This paper concerns with a relay-aided massive multiple input multiple output (MIMO) cellular network. The exact closed-form expressions of both spectral ef?ciency (SE) and energy ef?ciency (EE) are obtained for downlink single-cell multi-user multi-relay massive MIMO transmission in the pilot-contaminated regime, where the number of users is larger than the pilot sequence length. Based on the theoretical results of SE and EE, we investigate the effects of some system parameters [such as number of antennas at the base station (BS), transmit power at the BS, and transmit power of each relay station (RS)] on system performance, and achieve the tradeoff between SE and EE by power control. Speci?cally, the tradeoff problem is solved by joint optimization over transmit power P of the BS and transmit power pr of each RS, so as to maximize EE while satisfying the SE requirement. With the proposition that EE function is strictly quasi-concave with either P or pr , we propose two optimization methods: 1-D searching and alternate optimization. Comparatively, the former achieves a better performance, while the latter has a lower complexity. Simulation results validate the effectiveness of the two methods.

    关键词: spectral ef?ciency,Cellular networks,massive MIMO,relay,energy ef?ciency

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP) - London, United Kingdom (2019.12.11-2019.12.13)] 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP) - Temperature Stability of Elastomeric Colloidal Quantum Dot Colour Converter

    摘要: Underwater wireless optical communications are an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes are employed as signature codes of underwater mobile users. Fundamental key aspects of the network, such as its backhaul architecture, its potential applications, and its design challenges, are presented. In particular, a promising underwater localization and positioning scheme based on this cellular network is presented. Furthermore, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Finally, probable design challenges, such as cell edge coverage, blockage avoidance, power control, and network capacity, are addressed.

    关键词: power control,optical CDMA networks,undersea localization and positioning,underwater sensor networks,Underwater wireless optical communications,relay-assisted transmission

    更新于2025-09-19 17:13:59

  • [IEEE 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) - Kanpur, India (2019.7.6-2019.7.8)] 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) - Numerical Investigation of Ultra-high Negative Dispersion Compensating Octagonal Photonic Crystal Fiber With High Nonlinearity

    摘要: To achieve insights about the impact of amplified loop interference, we consider a dual-hop full-duplex (FD) massive multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying system in terms of achievable ergodic rates for each user pair as well as spectrum and energy efficiencies. It is assumed that the base station (or relay) is equipped with MRx receive antennas and MTx transmit antennas, while all sources and destinations have a single antenna. For such FD massive MIMO AF relaying systems, the closed-form expressions of the lower bounds of achievable ergodic rates are derived first with a finite number of receive and transmit antennas at base station. Then, the asymptotic performance analysis is performed by considering three different power-scaling schemes: 1) PS = ES /MRx and PR = ER; 2) PS = ES and PR = ER/MTx; and 3) PS = ES /MRx and PR = ER/MTx, where ES and ER are fixed, and PS and PR denote the transmit powers of each source and relay, respectively. Our results show that only when the power-scaling 2) is utilized, do the FD massive MIMO AF relay systems have the ability to restrict the loop interference, so that the system performance is free of loop interference when the number of antennas at the relay is large enough. On the contrary, with the power-scaling cases 1) and 3), the systems have no ability to cancel the loop interference even if MRx or MTx (or both) goes to infinity. The insight is different from the results in the FD massive MIMO decode-and-forward relaying systems where the loop interference can be entirely eliminated for the three power-scaling cases.

    关键词: energy efficiency,ergodic rates,Full-duplex,massive MIMO,relay,amplify-and-forward

    更新于2025-09-19 17:13:59

  • [IEEE IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium - Yokohama, Japan (2019.7.28-2019.8.2)] IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium - Knowledge Guided Classification Of Hyperspectral Image Based on Hierarchical Class Tree

    摘要: We analyze the performance of an interference-limited decode-and-forward cooperative relaying system that comprises a source, a destination, and N relays, arbitrarily placed on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first, the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is successfully transmitted. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is particularly helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput.

    关键词: interference,relay networks,stochastic processes,Cooperative communication,wireless communication

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Grid-forming Inverter Experimental Testing of Fault Current Contributions

    摘要: This paper concerns with a relay-aided massive multiple input multiple output (MIMO) cellular network. The exact closed-form expressions of both spectral efficiency (SE) and energy efficiency (EE) are obtained for downlink single-cell multi-user multi-relay massive MIMO transmission in the pilot-contaminated regime, where the number of users is larger than the pilot sequence length. Based on the theoretical results of SE and EE, we investigate the effects of some system parameters [such as number of antennas at the base station (BS), transmit power at the BS, and transmit power of each relay station (RS)] on system performance, and achieve the tradeoff between SE and EE by power control. Specifically, the tradeoff problem is solved by joint optimization over transmit power P of the BS and transmit power pr of each RS, so as to maximize EE while satisfying the SE requirement. With the proposition that EE function is strictly quasi-concave with either P or pr, we propose two optimization methods: 1-D searching and alternate optimization. Comparatively, the former achieves a better performance, while the latter has a lower complexity. Simulation results validate the effectiveness of the two methods.

    关键词: spectral efficiency,energy efficiency,massive MIMO,Cellular networks,relay

    更新于2025-09-19 17:13:59