- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Selective guided sampling with complete light transport paths
摘要: Finding good global importance sampling strategies for Monte Carlo light transport is challenging. While estimators using local methods (such as BSDF sampling or next event estimation) often work well in the majority of a scene, small regions in path space can be sampled insufficiently (e.g. a reflected caustic). We propose a novel data-driven guided sampling method which selectively adapts to such problematic regions and complements the unguided estimator. It is based on complete transport paths, i.e. is able to resolve the correlation due to BSDFs and free flight distances in participating media. It is conceptually simple and places anisotropic truncated Gaussian distributions around guide paths to reconstruct a continuous probability density function (guided PDF). Guide paths are iteratively sampled from the guided as well as the unguided PDF and only recorded if they cause high variance in the current estimator. While plain Monte Carlo samples paths independently and Markov chain-based methods perturb a single current sample, we determine the reconstruction kernels by a set of neighbouring paths. This enables local exploration of the integrand without detailed balance constraints or the need for analytic derivatives. We show that our method can decompose the path space into a region that is well sampled by the unguided estimator and one that is handled by the new guided sampler. In realistic scenarios, we show 4× speedups over the unguided sampler.
关键词: Sampling and Reconstruction,Global Illumination,Stochastic Sampling,Monte Carlo
更新于2025-09-23 15:23:52
-
[IEEE 2019 IEEE SENSORS - Montreal, QC, Canada (2019.10.27-2019.10.30)] 2019 IEEE SENSORS - Passive Proximity Detection Based on a Miniaturized Pyramidal Optical Sensor
摘要: Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.
关键词: graph signal sampling and reconstruction,irregular domain,bandlimited subspace,local set,frame theory,Graph signal processing
更新于2025-09-23 15:19:57