- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Tailoring Bond Topologies in Open-Shell Graphene Nanostructures
摘要: Polycyclic aromatic hydrocarbons exhibit a rich spectrum of physico-chemical properties depending on the size, and more critically, on the edge and bond topologies. Among them, open-shell systems – molecules hosting unpaired electron densities – represent an important class of materials for organic electronic, spintronic and optoelectronic devices, but remain challenging to synthesize in solution. We report the on-surface synthesis and scanning tunneling microscopy- and spectroscopy-based study of two ultra-low-gap open-shell molecules, namely peri-tetracene, a benzenoid graphene fragment with zigzag edge topology, and dibenzo[a,m]dicyclohepta[bcde,nopq]rubicene, a non-benzenoid non-alternant structural isomer of peri-tetracene with two embedded azulene units. Our results provide an understanding of the ramifications of altered bond topologies at the single-molecule scale, with the prospect of designing functionalities in carbon-based nanostructures via engineering of bond topology.
关键词: open-shell polycyclic aromatic hydrocarbons,atom manipulation,non-alternant polycyclic aromatic hydrocarbons,scanning tunneling microscopy,density functional theory,scanning tunneling spectroscopy
更新于2025-09-23 15:21:01
-
Self-assembled indium nanostructures formation on InSe (0001) surface
摘要: The surfaces of 2D layered crystals are one among most perspective templates for self-assembling of metal nanostructures due to the dewetting. The initial InSe (0001) surface as topological template was characterized by means of scanning tunneling microscopy/spectroscopy (STM/STS) and low electron energy diffraction. InSe (0001) surface used in the process of formation of nanostructures found to be a template covered with array of triangular-shaped cites. The results of STM/STS studies on the formation of indium nanostructures on (0001) surface of InSe layered semiconductor crystal are presented. Indium was thermally deposited on structurally perfect InSe crystal cleavages obtained in situ. Geometrically heterogeneous (in height) initial (0001) InSe surface is used to activate the dewetting phenomenon in a manner that leads to the formation of 0D triangular-shaped nucleus of deposited indium nanostructures. STS acquired spatially averaged I–V curves changes their dependence from semiconductor one to almost metallic due to dewetting process. Moreover, the spatial arrangement of formed indium nanostructures is powered by hexagonal lattice symmetry of InSe surface on macroscale.
关键词: Hetero nanostructures,Nanostructures template-directed assembly,Layered crystals,Scanning tunneling microscopy/spectroscopy,Indium selenide,Low energy electron diffraction
更新于2025-09-23 15:21:01
-
The design and the performance of an ultrahigh vacuum 3He fridge-based scanning tunneling microscope with a double deck sample stage for in-situ tip treatment
摘要: Scanning tunneling microscope (STM) is a powerful tool for studying the structural and electronic properties of materials at the atomic scale. The combination of low temperature and high magnetic field for STM and related spectroscopy techniques allows us to investigate the novel physical properties of materials at these extreme conditions with high energy resolution. Here, we present the construction and the performance of an ultrahigh vacuum 3He fridge-based STM system with a 7 Tesla superconducting magnet. It features a double deck sample stage on the STM head so we can clean the tip by field emission or prepare a spin-polarized tip in situ without removing the sample from the STM. It is also capable of in situ sample and tip exchange and preparation. The energy resolution of scanning tunneling spectroscopy at T = 310 mK is determined to be 400 mK by measuring the superconducting gap with a niobium tip on a gold surface. We demonstrate the performance of this STM system by imaging the bicollinear magnetic order of Fe1+xTe at T = 5 K
关键词: Spin polarized scanning tunneling microscopy,Superconducting gap,Magnetic structure
更新于2025-09-23 15:21:01
-
Epitaxial Growth of Monolayer MoS <sub/>2</sub> on SrTiO <sub/>3</sub> Single Crystal Substrates for Applications in Nanoelectronics
摘要: Monolayer molybdenum disulfide (MoS2) crystals grown on amorphous substrates such as SiO2 are randomly oriented. However, when MoS2 is grown on crystalline substrates, the crystal shapes and orientations are also influenced by their epitaxial interaction with the substrate. In this paper we present the results from chemical vapor deposition growth of MoS2 on three different terminations of single crystal strontium titanate (SrTiO3) substrates. On SrTiO3(111) the monolayer MoS2 crystals form equilateral triangles with two main orientations, in which they align their <21?1?0>-type directions (i.e., the sulfur-terminated edge directions) with the <11?0>-type directions on SrTiO3. This arrangement allows near perfect coincidence epitaxy between seven MoS2 unit cells and four SrTiO3 unit cells. On SrTiO3(110) the MoS2 crystals tend to align their edges with both <11?0> and <11?2?> directions on SrTiO3 as these both provide favorable coincidence lattice registry. This distorts the crystal shapes and introduces an additional strain detectable by photoluminescence. When triangular MoS2 crystals are grown on SrTiO3(001), they again show a preference to align their edges with the <11?0> directions on SrTiO3. Our observations can be explained if the interfacial van der Waals (vdW) bonding between MoS2 monolayers and SrTiO3 is greatest when the maximum commensuration between the lattices is achieved. Therefore, a key finding of this paper is that the vdW interaction between MoS2 and SrTiO3 substrates determines the supported crystal shapes and orientations by the epitaxial relations. Controlled crystal orientations make the growth of large sheets of MoS2 possible when there are multiple nucleation sites. This minimizes the number of grain boundaries and optimizes electronic properties of the material, e.g., charge mobility, which is crucial for the application of monolayer MoS2 in next-generation nanoelectronic devices.
关键词: Raman spectroscopy,van der Waals epitaxy,scanning tunneling microscopy,SrTiO3,2D materials,chemical vapor deposition,MoS2,photoluminescence spectroscopy
更新于2025-09-23 15:21:01
-
Visualizing Elementary Reactions of Methanol by Electrons and Holes on TiO2(110) Surface
摘要: Direct visualization and comparison of the elementary reactions induced by electrons and holes are of importance for finding a way to conduct chemical reactions and reaction sequences in a controllable manner. As a semiconductor, TiO2 provides a playground to perform the measurements, and more, the information can be useful for design of high performance TiO2-based catalysts and photocatalysts. Here, we present our investigation on the elementary reactions of CH3OH on TiO2 surface through visualization of specific elementary steps by highly controllable electron- and hole-injection using scanning tunneling microscopy. The distinct sequential routes and their kinetics, namely breaking C-O and O-H bonds by electrons and breaking O-H and C-H bonds by holes, respectively, have been experimentally identified and well elucidated by density functional theory calculations. Our nonlocal h-injection experimental and theoretical results suggest that the delocalized holes in the TiO2 substrate should be responsible for the temperature-dependent h-route reactions. The locally triggered e-route reaction is associated with the fact that the location of the unoccupied hybridization states is much higher than the conduction band onset. Our findings resolve the long standing debate about the intermediate species and reaction mechanism in photocatalytic oxidation of CH3OH. Our proposed protocol offers a powerful means to study elementary reactions induced by electrons and holes on semiconductor surface in general.
关键词: scanning tunneling microscopy,elementary reactions,density functional theory,CH3OH,holes,TiO2,electrons
更新于2025-09-23 15:21:01
-
Growth of Ag(1?1?1) on Si(1?1?1) with nearly flat band and abrupt interface
摘要: Growth of Ag films of up to 30 nm thickness on Si(1 1 1) 7 × 7 at room temperature is investigated by low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). LEED revealed the coexistence of Ag and Si spots starting with 1 monolayer (ML) of Ag deposited. The Ag lattice constant, starting with 25 ML, is slightly higher than for bulk Ag and increase linearly with Ag thickness, reaching about 4.2 nm for the thickest films. The average terrace widths detected from LEED spot profile analysis are about 30 nm for clean Si(1 1 1) 7 × 7 and about 5.5 nm for the thickest Ag(1 1 1) film, in agreement with STM observations. The intensity variation of core levels analyzed by XPS is taken into account by a model assuming the initial formation of Ag islands with linear variation of coverage vs. the amount of Ag deposited, followed by growth in a quasi layer-by-layer mode. The interface barrier is in the range of 0.4 eV, lower than all values reported previously. Ag deposited on Si(1 1 1) 7 × 7 at room temperature provides flat Ag(1 1 1) for synthesis of 2D materials, and may be used for low barrier Schottky diodes.
关键词: Scanning tunneling microscopy,Low energy electron diffraction,X-ray photoelectron spectroscopy,Ag/Si(1 1 1),Molecular beam epitaxy,Surface barrier height
更新于2025-09-23 15:19:57
-
Atomic-Scale Characterization of Graphene p–n Junctions for Electron-Optical Applications
摘要: Graphene p-n junctions offer a potentially powerful approach towards controlling electron trajectories via collimation and focusing in ballistic solid-state devices. The ability of p-n junctions to control electron trajectories depends crucially on the doping profile and roughness of the junction. Here, we use four-probe scanning tunneling microscopy and spectroscopy (STM/STS) to characterize two state-of-the-art graphene p-n junction geometries at the atomic scale, one with CMOS polySi gates and another with naturally cleaved graphite gates. Using spectroscopic imaging, we characterize the local doping profile across and along the p-n junctions. We find that realistic junctions exhibit non-ideality both in their geometry as well as in the doping profile across the junction. We show that the geometry of the junction can be improved by using the cleaved edge of van der Waals metals such as graphite to define the junction. We quantify the geometric roughness and doping profiles of junctions experimentally and use these parameters in Nonequilibrium Green’s Function based simulations of focusing and collimation in these realistic junctions. We find that for realizing Veselago focusing, it is crucial to minimize lateral interface roughness which only natural graphite gates achieve, and to reduce junction width, in which both devices under investigation underperform. We also find that carrier collimation is currently limited by the non-linearity of the doping profile across the junction. Our work provides benchmarks of the current graphene p-n junction quality and provides guidance for future improvements.
关键词: graphene p-n junctions,collimation,Veselago lensing,scanning tunneling microscopy,solid state electron optics
更新于2025-09-19 17:15:36
-
Influence of the support on stabilizing local defects in strained monolayer oxide films
摘要: Two-dimensional materials with a honeycomb lattice, such as graphene and hexagonal boron nitride, often contain local defects in which the hexagonal elements are replaced by four, five, seven, and eight-membered rings. An example is the Stone-Wales (S-W) defect, where a bond rotation causes four hexagons to be transformed into a cluster of two pentagons and two heptagons. A further series of similar defects incorporating divacancies results in larger structures of non-hexagonal elements. In this paper, we use scanning tunneling microscopy (STM) and density functional theory (DFT) modeling to investigate the structure and energetics of S-W and divacancy defects in a honeycomb (2 × 2) Ti2O3 monolayer grown on an Au(111) substrate. The epitaxial rumpled Ti2O3 monolayer is pseudomorphic and in a state of elastic compression. As a consequence, divacancy defects, which induce tension in freestanding films, relieve the compression in the epitaxial Ti2O3 monolayer and therefore have significantly lower energies when compared with their freestanding counterparts. We find that at the divacancy defect sites there is a local reduction of the charge transfer between the film and the substrate, the rumpling is reduced, and the film has an increased separation from the substrate. Our results demonstrate the capacity of the substrate to significantly influence the energetics, and hence favor vacancy-type defects, in compressively strained 2D materials. This approach could be applied more broadly, for example to tensile monolayers, where vacancy-type defects would be rare and interstitial-type defects might be favored.
关键词: elastic strain,local structural defects,monolayers,scanning tunneling microscopy (STM),density functional theory (DFT),two-dimensional materials,ultrathin oxide films
更新于2025-09-19 17:15:36
-
RECENT ADVANCES IN ULTRAFAST TIME-RESOLVED SCANNING TUNNELING MICROSCOPY
摘要: Making smaller and faster functional devices has led to an increasing demand for a microscopic technique that allows the investigation of carrier and phonon dynamics with both high spatial and temporal resolutions. Traditional optical pump–probe methods can achieve femtosecond temporal resolution but fall short in the spatial resolution due to the diffraction limit. Scanning tunneling microscopy (STM), on the contrary, has realized atomic-scale spatial resolution relying on the high sensitivity of the tunneling current to the tip-sample distance. However, limited by the electronics bandwidth, STM can only push the temporal resolution to the microseconds scale, restricting its applications to probe various ultrafast dynamic processes. The combination of these two methods takes advantages of optical pump–probe techniques and highly localized tunneling currents of STM, providing one viable solution to track atomic-scale ultrafast dynamics in single molecules and low-dimensional materials. In this review, we will focus on several ultrafast time-resolved STM methods by coupling the tunneling junctions with pulsed electric waves, THz, near-infrared and visible laser. Their applications to probe the carrier dynamics, spin dynamics, and molecular motion will be highlighted. In the end, we will present an outlook on the challenges and new opportunities in this field.
关键词: terahertz technique,femtosecond laser,Scanning tunneling microscopy,pump-probe technique,ultrafast dynamics.
更新于2025-09-19 17:15:36
-
Bismuth mediated defect engineering of epitaxial graphene on SiC(0001)
摘要: Structural defects are commonly undesirable in materials, however, atomic-level defect engineering is promising to improve the electronic, mechanical and chemical properties of graphene, if the density and types of defects could be well controlled. Herein, bismuth-mediated defect engineering method for epitaxial graphene (EG) grown on SiC(0001) is demonstrated. It is found that single defects and defect clusters could be facilitated by evaporating Bi atoms on SiC(0001) substrate before the standard EG preparation and, Bi atoms could be thoroughly cleaned away from the EG and the unwanted doping effects of Bi will be avoided by post-annealing at higher temperature. Scanning tunneling microscopy/spectroscopy characterization reveals the atomic structures, the electronic states and the Fermi level shift of flower-like, tube-like and point defects. This study sheds light on the metal-mediated formation of defects in graphene, and provides a practical defect engineering method.
关键词: Defect engineering,Scanning tunneling microscopy/spectroscopy.,Epitaxial graphene (EG)
更新于2025-09-19 17:15:36