- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip
摘要: Leukocyte subpopulations contain crucial physiological information; hence, precise and specific leukocyte separation is very important for leukemia diagnosis and analysis. However, conventional centrifugation and immunofluorescence-based separation methods are inaccurate and inconvenient due to the overlapping cell size and density or complex marking processes. Herein, we report a new label-free technology for precise leukocyte subpopulation separation by synergy of acoustic and optical technologies. Standing surface acoustic wave (SSAW) solved the problem of gentle and precise focusing of cells in optical systems. In addition, SSAW was used for the separation of granulocytes, which have evident size distinction from other components. In case of lymphocytes and monocytes, which have overlap in size/density, optical force could distinguish them accurately based on the RI difference, with the convenience of acoustic pre-focusing. In this experiment, separation of three types of leukocyte subtypes with considerable throughput and purity was conducted, through which we obtained 99% pure lymphocytes, 98% pure monocytes, and 95% pure granulocytes. Experimental results prove that the device has robust ability in separating leukocyte phenotypes and have the advantages of being non-invasive, label-free and precise. In the future, this convenient hybrid method will be a potential powerful tool for auxiliary clinical diagnosis and analysis.
关键词: label-free,cell sorting,microfluidics,acoustic-optical chip,leukocyte separation
更新于2025-11-25 10:30:42
-
Site-controlled formation of single Si nanocrystals in a buried SiO <sub/>2</sub> matrix using ion beam mixing
摘要: For future nanoelectronic devices – such as room-temperature single electron transistors – the site-controlled formation of single Si nanocrystals (NCs) is a crucial prerequisite. Here, we report an approach to fabricate single Si NCs via medium-energy Si+ or Ne+ ion beam mixing of Si into a buried SiO2 layer followed by thermally activated phase separation. Binary collision approximation and kinetic Monte Carlo methods are conducted to gain atomistic insight into the influence of relevant experimental parameters on the Si NC formation process. Energy-filtered transmission electron microscopy is performed to obtain quantitative values on the Si NC size and distribution in dependence of the layer stack geometry, ion fluence and thermal budget. Employing a focused Ne+ beam from a helium ion microscope, we demonstrate site-controlled self-assembly of single Si NCs. Line irradiation with a fluence of 3000 Ne+/nm2 and a line width of 4 nm leads to the formation of a chain of Si NCs, and a single NC with 2.2 nm diameter is subsequently isolated and visualized in a few nanometer thin lamella prepared by a focused ion beam (FIB). The Si NC is centered between the SiO2 layers and perpendicular to the incident Ne+ beam.
关键词: phase separation,Monte Carlo simulations,single electron transistor,ion beam mixing,helium ion microscopy
更新于2025-11-21 11:20:48
-
Facile Construction of Defect-rich Rhenium Disulfide/Graphite Carbon Nitride Heterojunction via Electrostatic Assembly for fast Charge Separation and Photoactivity Enhancement
摘要: Graphite carbon nitride (CN) is one of the most researched visible light photocatalysts, but it still cannot be used practically because of its low photoactivity resulting mainly from rapid photogenerated charge recombination. To accelerate charge separation, CN was herein electrostatically assembled with ReS2, a two-dimensional semiconductor to construct heterojunction for the first time. The electrostatic and coordination interactions between CN and defect-rich ReS2 make them close contact to form heterojunctions. The ReS2/CN heterojunction exhibits higher photocatalytic performance in pollutant degradation owing to faster generation of reactive oxygen species than CN, as well as increased visible and near-infrared light absorption because of strong photoabsorption of defect-rich ReS2. The accelerated reactive oxygen species generation for the heterojunction arises from accelerated charge separation, especially fast transfer of holes from CN to ReS2 in assistance of interfacial electric field and great valance-band edge difference. This work provides a novel CN-based heterojunction for photoactivity improvement and illustrates significance of electrostatic attraction in fabricating heterojunctions.
关键词: electrostatic interaction,photocatalytic,rhenium disulfide,graphite carbon nitride,charge separation
更新于2025-11-21 11:03:13
-
Surface decoration of BiOCl with BiVO<sub>4</sub> particles towards enhanced visible-light-driven photocatalytic performance
摘要: BiVO4/BiOCl p-n junctioned photocatalysts were synthesized by surface replacement of pre-synthesized BiOCl with BiVO4 via a hydrothermal route. BiVO4 particles were decorated on the surface of BiOCl, the structures of which were favored of maximizing absorption of visible light. The photocatalytic activity of the heterojunctioned composites were evaluated by degradation of Rhodamine B (RhB) dye under visible light illumination. The results indicated that the composites exhibited superior efficiencies for RhB photodegradation in comparison with pure BiOCl, BiVO4 and BiOCl/BiVO4 with similar compositions. The 30% BiVO4/BiOCl exhibited an optimal photocatalytic activity due to the combinative effects of large visible-light absorbance and carrier separation. Experiments on scavenging active intermediates demonstrated that the enhanced photoactivity was primarily attributed to the formation of p-n junction. An effective built-in electric field was formed by the interface between p-type BiOCl and n-type BiVO4, which promoted the efficient separation of photoinduced electron-hole pairs.
关键词: visible light absorption,BiVO4 decorated BiOCl,surface replacement,heterostructures,charge carrier separation
更新于2025-11-14 17:04:02
-
Competing photochemical reactions of bis-naphthols and their photoinduced antiproliferative activity
摘要: Photophysical properties and photochemical reactivity for a series of bis-naphthols 4a-4e and bis-anthrols 5a and 5e were investigated by preparative irradiations in CH3OH, fluorescence spectroscopy and laser flash photolysis (LFP). Methanolysis taking place via photodehydration (bis-naphthols ΦR = 0.04-0.05) is in competition with symmetry breaking charge separation (SB-CS). The SB-CS gives rise to radical ions that were for 4a and 4e detected by LFP. Photodehydration gives quinone methides (QMs) that were also detected by LFP (λmax = 350 nm, τ ≈ 1-2 ms). In the aqueous solvent, excited state proton transfer (ESPT) competes with the above mentioned processes, giving rise to naphtholates, but the process is inefficient and can only be observed in the buffered aqueous solution at pH >7. Since the dehydration of bis-naphthols delivers QMs, their potential antiproliferative activity was investigated by MTT test on three human cancer cell lines (NCI-H1299, lung carcinoma; MCF-7, breast adenocarcinoma; and SUM159, pleomorphic breast carcinoma). Cells were treated with 4 or 5 with or without irradiation (350 nm). An enhancement of the activity (up to 10-fold) was observed upon irradiation, which may be associated to the QM formation. However, these QMs do not cross-link DNA. The activity is most likely associated to the alkylation of proteins present in the cell cytoplasm, as evidenced by photoinduced alkylation of bovine and human serum albumins by 4a.
关键词: quinone methides,bis-anthrols,excited state proton transfer,protein alkylation,bis-naphthols,antiproliferative activity,photodehydration,symmetry breaking charge separation
更新于2025-11-14 15:32:45
-
Facile synthesis of indium hydroxide nanosheet/bismuth molybdate hierarchical microsphere heterojunction with enhanced photocatalytic performance
摘要: Various Bi2MoO6 (BM)-based heterojunctions have been constructed to enhance the photocatalytic performance, but hydroxide/BM heterojunctions were rarely reported. To illustrate function of hydroxides in the heterojunctions for charge separation and photoactivity enhancement, In(OH)3/BM heterojunctions were simply prepared for the first time via in situ growth of In(OH)3 nanosheets on surfaces of BM hierarchical microspheres in a chemical precipitation process at the room temperature. Construction of the heterojunction benefits from formation of In-O-Bi/Mo bonds at the interface between BM and In(OH)3. Photoluminescence spectroscopy, time-resolved fluorescence spectroscopy, and photoelectrochemical tests demonstrate that the In(OH)3/BM heterojunction exhibits considerably accelerated separation of photoinduced charge carriers which results in increased generation rates of reactive oxygen species and enhanced photocatalytic degradation efficiencies for Rhodamine B, salicylic acid, and resorcinol, in comparison with pure BM. The heterojunction shows high chemical stability and satisfactory recyclability. This work provides a new BM-based heterojunction and, more importantly, deep insight into function of hydroxides in the heterojunction, which can direct preparation of other hydroxide-containing heterojunctions.
关键词: Bi2MoO6,In(OH)3,Heterojunction,Photocatalysis,Charge separation
更新于2025-11-14 15:24:45
-
Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics
摘要: Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm?2, resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.
关键词: non-fullerene acceptors,power conversion efficiency,voltage losses,charge separation,organic photovoltaics
更新于2025-11-14 15:18:02
-
Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer
摘要: Photocatalysis has been widely studied as a promising technique for removal of organic pollutants in wastewater. A modified carbon nitride has been designed for this purpose. In this study, a facile method to synthesize distorted carbon nitride by simply copolymerizing urea and salicylic acid (SA) has been explored. The incorporation of SA induced the structure change from planar structure to distorted curls structure. Compared to pristine CN, the CN-SA shows wide light absorption, which is attributed to the n → π* transition at the nitrogen atoms with lone pair electrons of heptazine units. The photoelectrode of CN-SA exhibited higher photocurrent and lower charge resistance than that of pristine CN electrode, indicating that the photogenerated charge carriers of CN-SA are more efficiently separated. As a result, the optimal CN-SA shows 2-fold enhancement in degradation of tetracycline (TC) as compared to pristine CN. Furthermore, we found that the degradation rate of sulfamethazine (SMZ) was 0.0823 min?1 using the CN-SA photocatalyst, which is three times higher than that of pristine CN (0.0293 min?1). In addition, the CN-SA shows good stability without structural change or loss of photocatalytic performance after four cycles. According to the radical species trapping experiments and electron spin resonance analyses, ?O2? and h+ were the main active species involved in the degradation of organic pollutants. The developed strategy provides a novel approach to design the tunable band structure of organic semiconductor materials for various applications.
关键词: Salicylic acid,Photocatalysis degradation,Carbon nitride,Charge separation,Antibiotics
更新于2025-11-14 14:48:53
-
Three-in-one oxygen vacancy: whole visible-spectrum absorption, efficient charge separation and surface site activation for robust CO2 photoreduction
摘要: Exploitation of efficient catalysts to realize solar-driven conversion of inert CO2 into useful fuels confronts big challenges owing to the poor photoabsorption, sluggish charge separation and inefficient surface reactive sites of photocatalysts. Herein, we report a facile and controllable in situ reduction strategy to create surface oxygen vacancies (OVs) on Aurivillius-phase Sr2Bi2Nb2TiO12 nanosheets. Sr2Bi2Nb2TiO12 nanosheets are for the first time prepared by a mineralizer-assisted soft-chemical method, and the introduction of OVs on the surface of Sr2Bi2Nb2TiO12 not only extends photo-response region, but also tremendously promotes separation of photo-induced charge carriers. Moreover, the adsorption and activation of CO2 molecules on the surface of the catalyst are largely enhanced. In the gas-solid reaction system without any co-catalysts or sacrificial agents, OVs-abundant Sr2Bi2Nb2TiO12 nanosheets show an outstanding CO2 photoreduction activity in producing CO with a rate of 17.11 μmol g?1 h?1, ~58 times higher than that of the bulk counterpart, surpassing most previously reported state-of-the-art photocatalysts. Our study provides a three-in-one integrated solution to advance the comprehensive performance of photocatalysts for solar-energy conversion and generation of renewable energy.
关键词: Sr2Bi2Nb2TiO12 nanosheets,charge separation,photocatalytic CO2 reduction,oxygen vacancies
更新于2025-09-23 15:23:52
-
Effects of Protonation, Hydroxylamination, and Hydrazination of g-C3N4 on the Performance of Matrimid?/g-C3N4 Membranes
摘要: One of the challenges to continue improving polymeric membranes properties involves the development of novel chemically modified fillers, such as nitrogen-rich 2-D nanomaterials. Graphitic carbon nitride (g-C3N4) has attracted significant interest as a new class of these fillers. Protonation is known to afford it desirable functionalities to form unique architectures for various applications. In the work presented herein, doping of Matrimid? with protonated g-C3N4 to yield Matrimid?/g-C3N4 mixed matrix membranes was found to improve gas separation by enhancing the selectivity for CO2/CH4 by up to 36.9% at 0.5 wt % filler doping. With a view to further enhancing the contribution of g-C3N4 to the performance of the composite membrane, oxygen plasma and hydrazine monohydrate treatments were also assayed as alternatives to protonation. Hydroxylamination by oxygen plasma treatment increased the selectivity for CO2/CH4 by up to 52.2% (at 2 wt % doping) and that for O2/N2 by up to 26.3% (at 0.5 wt % doping). Hydrazination led to lower enhancements in CO2/CH4 separation, by up to 11.4%. This study suggests that chemically-modified g-C3N4 may hold promise as an additive for modifying the surface of Matrimid? and other membranes.
关键词: carbon nitride,O2/N2,Matrimid? 5218,CO2/CH4,gas separation,mixed matrix membrane
更新于2025-09-23 15:23:52