- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A poly (vinyl butyral)/graphene oxide composite with NIR light-induced shape memory effect and solid-state plasticity
摘要: A NIR light-induced shape memory composite with light-induced plasticity was prepared by incorporating graphene oxide (GO) into cross-linked poly (vinyl butyral) (PVB). The cross-linked reaction between PVB and aromatic diisocyanate not only endowed the composites with excellent shape memory properties, but also offered the performance of solid-state plasticity due to the formation of carbamate bonds. The photo-responsive performance was introduced to the system by doping GO, a conventional photothermal reagent, resulting in excellent NIR light-induced shape memory properties and light-induced plasticity. According to the stress relaxation tests, the solid-state plasticity of composites could be regulated by the cross-linked density, GO, catalyst dosage and temperature. Moreover, the composites can be repeatedly programmed to a new permanent shape via a light-induced plasticity process, which still exhibited excellent light-induced shape memory properties even after 5 cycles of reconfiguration. The results demonstrate the promising prospect of these composites as actuator elements for applications in self-deployment devices and soft robotic.
关键词: Smart materials,Functional composites,Shape memory polymers,Polymer-matrix composites (PMCs),Plastic deformation
更新于2025-09-23 15:21:21
-
Shape memory polymer resonators as highly sensitive uncooled infrared detectors
摘要: Uncooled infrared detectors have enabled the rapid growth of thermal imaging applications. These detectors are predominantly bolometers, reading out a pixel’s temperature change due to infrared radiation as a resistance change. Another uncooled sensing method is to transduce the infrared radiation into the frequency shift of a mechanical resonator. We present here highly sensitive resonant infrared sensors, based on thermo-responsive shape memory polymers. By exploiting the phase-change polymer as transduction mechanism, our approach provides 2 orders of magnitude improvement of the temperature coefficient of frequency. Noise equivalent temperature difference of 22 mK in vacuum and 112 mK in air are obtained using f/2 optics. The noise equivalent temperature difference is further improved to 6 mK in vacuum by using high-Q silicon nitride membranes as substrates for the shape memory polymers. This high performance in air eliminates the need for vacuum packaging, paving a path towards flexible non-hermetically sealed infrared sensors.
关键词: resonant infrared sensors,uncooled infrared detectors,thermal imaging,shape memory polymers,phase-change polymer
更新于2025-09-16 10:30:52