- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Bi-Junction Carrier Depletion Type Electro-Optic Phase-Shifters
摘要: Silicon photonic integrated circuits (PICs) combine dense optical system integration with industrial scalability by adopting well-established CMOS fabrication processes. An electro-optic phaseshifter (EOP) represents a basic building unit of several PICs applications, including datacom optical switches, PIC-FPGAs, and beam steering. In-situ resistive-heaters in close vicinity of waveguides, or free-carrier injection/depletion in doped junctions, are common methods to build EOPs. Literature reports thermal shifters consuming 24.7 mW to achieve DC large signal π-phaseshift, power consumption of injection PIN implementations and depletion PN modulators of 10 mW and ≈ 0 mW respectively. A thermal EOP naturally avoids carrier-induced optical insertion losses (IL), in contrast to a PIN/PN modulator. Thus, thermal and PIN/PN methods trade-off IL with electrical power rather than minimizing both. An EOP of low optical losses and low electrical power is highly desired in large-signal, and low-speed applications.
关键词: electro-optic phaseshifter,datacom optical switches,PIC-FPGAs,beam steering,CMOS fabrication,Silicon photonic integrated circuits
更新于2025-09-11 14:15:04
-
Optimal ultra-miniature polarimeters in silicon photonic integrated circuits
摘要: Measurement of the state of polarization of light is essential in a vast number of applications, such as quantum and classical communications, remote sensing, astronomy, and biomedical diagnostics. Nanophotonic structures and integrated photonic circuits can, in many circumstances, replace conventional discrete optical components for miniature polarimeters and chip-scale polarimetry systems and thus significantly improve robustness while minimizing the footprint and cost. We propose and experimentally demonstrate two silicon photonic four-photodetector (PD) division-of-amplitude polarimeters (4PD-DOAPs) using a complementary metal–oxide–semiconductor-compatible photonic fabrication process. The first design targets minimizing the number of optical components. The second design makes use of a slightly more complex circuit design to achieve an optimal frame for measurements; this measurement frame minimizes and equalizes estimation variances in the presence of the additive white Gaussian noise and the signal dependent shot noise. Further theoretical examination reveals that within the optimal measurement frames for Stokes polarimeters, the DOAP with four PDs has the minimal equally weighted variance compared to those with a greater number of PDs.
关键词: silicon photonic integrated circuits,nanophotonic structures,state of polarization,polarimeters,chip-scale polarimetry systems
更新于2025-09-11 14:15:04