修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Submicron bubbles/voids formation in the subsurface region of soda-lime glass by single pulse fs laser-induced spallation

    摘要: The formation of bubbles near the surface of soda-lime glass induced by single pulse irradiation with Ti: Sapphire laser of a wavelength of 775 nm and 150 fs pulse duration below the laser ablation threshold is reported. The bubbles with a diameter of 0.3 to 3 μm are much smaller than the spot size of ~12 μm and exhibit a semi-spherical surface, an ellipsoidal void and an upper shell thickness of approx. 100 nm. The bubbles are formed in a narrow energy range between bulk glass modification and glass ablation. The bubbles formation is accomplished with some changes of the glass morphology around the bubbles. Damaged bubbles occur near the upper laser energy limit for bubbles formation that show nanoholes or slits in the bubbles shell and opened shells exposing the bottom of the void. It is suggested, that the bubble forming mechanism is related to nonlinear processes of laser photon absorption, laser-induced spallation processes, materials heating after electron relaxation, and thermal driven, viscoplastic-mechanical processes. Mainly the material composition gradient of the soda-lime glass near the surface that affects photon absorption, melting, ablation and material expansion processes enable the formation of these bubbles. The void inside the bubble is formed first by pre-spallation resulting in a detached layer that is lifted further forming the bubbles shell by subsurface laser ablation/evaporation processes of the bulk glass. The upper shell of the bubble is formed by a thermally stable crust of corroded soda-lime glass. The results may have valuable impact to laser ablation processes for high precision fabrication. Further, the fast fabrication of such 3D submicron structures due to the single pulse interaction with the glass enables new technical processes for potential applications in sensing, photonic or microfluidic.

    关键词: soda-lime glass,surface modification,single pulse,nonlinear absorption,femtosecond laser,bubble,spallation

    更新于2025-09-19 17:13:59

  • Plasmonic and nonlinear optical behavior of nanostructures in glass matrix for photonics application

    摘要: There is a growing interest in bimetallic core shell nanostructures that comprised out of noble metals due to their fascinating plasmonic properties, leading to a wide range of applications in future nanotechnology. Here we report on Ag/Cu core shell nanostructures in a glass matrix. It includes novel approaches for characterizing embedded core shell nanostructures with a detailed study on the nanosize effect in tuning their optical and nonlinear optical properties along with biomedical applications. Annealing the Ag/Cu as- exchanged samples resulted in the formation of core-shell nanostructures, which were confirmed using UV–vis absorption spectroscopy and high-resolution transmission electron microscopy. The prepared plasmonic nanostructures were further studied using X-ray diffraction, Rutherford backscattering, photoluminescence, Raman, X-ray photoelectron spectroscopy and Z scan techniques. The nonlinear optical properties of the glasses containing bimetallic nanoparticles have been studied at a non-resonant wavelength using femtosecond laser pulses and a possible mechanism for the observed nonlinearity have been explained.

    关键词: Soda-lime glass,Core-shell nanostructures,Surface plasmon resonance

    更新于2025-09-16 10:30:52

  • Laser-treated glass platform for rapid wicking-driven transport and particle separation in bio microfluidics

    摘要: In this work, we present a laser-based fabrication technique for direct patterning of micro-channels consisting of interconnected micro-cracks on soda-lime glass. Using a CO2 laser to deposit energy at a linear rate of 18.75 to 93.75 mJ mm?1, we were able to manipulate the micro-crack formation, while enabling rapid manufacturing and scalable production of cracked-glass microfluidic patterns on glass. At the higher end of the energy deposition rate (93.75 mJ mm?1), the laser fabricated microfluidic channels (1 mm wide and 20 mm long) had extremely fast wicking speeds (24.2 mm s?1, ~10 faster than filter paper) as a result of significant capillary action and laser-induced surface hydrophilization. At the lower end (18.75 mJ mm?1), 3–4 mm wide micro-cracked crevices resulted in an increased mesh/sieve density, hence, more efficiently filtering particle-laden liquid samples. The reproducibility tests revealed an averaged wicking speed of 10.6 ± 1.5 mm s?1 measured over 21 samples fabricated under similar conditions, similar to that of filter paper (~85%). The micro-cracked channels exhibited a stable shelf life of at least 82 days with a wicking speed within 10–13 mm s?1.

    关键词: laser-based fabrication,particle separation,soda-lime glass,micro-channels,wicking speeds

    更新于2025-09-11 14:15:04

  • Low-Temperature Process for Direct Formation of MoS2 Thin Films on Soda-Lime Glass Substrates

    摘要: To obtain molybdenum disulfide (MoS2) patterns without any mechanical problems caused by the transfer process, direct current (DC) sputtering and rapid thermal processing (RTP) were used to form MoS2 instead of the conventional chemical vapor deposition (CVD) process. To form MoS2 on a soda-lime glass substrate at temperatures below 600 °C, MoS2 films were deposited at various DC sputtering powers and annealed at various temperatures from 400 °C to 550 °C. From the scanning electron microscope (SEM) and atomic force microscope (AFM) results, the surface morphologies of the MoS2 films can be observed, depending on the sputtering power and the film thickness. The Raman spectrum results showed that the E1 2g and A1 g mode peaks appeared at approximately 372 cm?1 and 400 cm?1, respectively, and the MoS2 surface was crystallized in the in-plane direction. The X-ray photoelectron spectroscopy (XPS) results showed noticeable S 2p (2p 1/2, 2p 3/2) peaks and Mo 3d (3d 3/2, 3d 5/2) peaks at stable binding energies after RTP at temperatures below 600 °C. The high mobilities and carrier densities of all the MoS2 films can be investigated from the Hall measurements.

    关键词: DC Sputtering,Low Temperature,Molybdenum Disulfide (MoS2),Rapid Thermal Processing (RTP),Soda-Lime Glass

    更新于2025-09-04 15:30:14