修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Suppression of Ag migration by low-temperature sol-gel zinc oxide in the Ag nanowires transparent electrode-based flexible perovskite solar cells

    摘要: Silver nanowires (Ag NWs) network is an excellent candidate as flexible transparent electrode applying in flexible perovskite solar cells, owing to their excellent electrical and optical properties. However, several problems including large surface roughness, chemical reaction between Ag and perovskite precursor, and migration of Ag limited the application in high performance perovskite solar cells. Aiming to solve these problems, the composite electrode combining the spray coated Ag nanowires and the low-temperature sol-gel zinc oxide was developed in this work. The optimized concentration and annealing temperature of sol-gel ZnO were 0.45 M and 150°C. The introduction of zinc oxide with suitable concentration caused slight impact on the transmittance and sheet resistant of transparent composite electrode, and promoted mechanical and chemical stability in air relative to the pristine Ag NWs electrode. The use of the composite flexible electrode could decrease the surface roughness of the Ag NWs electrode, passivate the reaction of perovskite and silver electrode, and prevent the migration of Ag. As a consequence, the performance of the flexible device significantly improved from 9.51% to 13.12%. Under the AM 1.5G constant illumination, the optimization device has a remarkably improved stability than pristine device. This study demonstrates that spray Ag NWs as bottom electrode is suitable for flexible perovskite solar cells. Meanwhile, it’s an effective method using sol-gel ZnO to construct composite electrode to promote the device performance and stability.

    关键词: Ag nanowire electrode,Ag migration,Flexible perovskite solar cells,Sol-gel ZnO,Bending resistance

    更新于2025-09-23 15:21:01

  • Sol–gel ZnO modified by organic dye molecules for efficient inverted polymer solar cells

    摘要: ZnO layer was modified with the addition of Cationic dyes including Crystal Violet (CV)/Ethyl violet (EV) in sol–gel process for an electron transport layer in inverted polymer solar cells (PSCs). X-ray photoelectron spectra showed the presence of CV/EV at the top of ZnO surface. Besides, oxygen defect was significantly reduced by CV/EV modification due to the chloride occupation. Furthermore, the amount of CV/EV decreased progressively from ZnO surface to bottom, being evidenced by depth profile. With modification, the ZnO surface became smoother and more hydrophobic to improve the contact with active layer. Meanwhile, CV/EV participated in the crystallization which resulted in the larger ZnO crystal grain size. Interface dipole after modification would slightly reduce the work function of ZnO and the energy barrier between ZnO and active layer via Ultraviolet Photoelectron Spectroscopy and External Quantum Efficiency analysis. Accordingly, inverted PSCs possessed better morphology, better electron extraction ability with ZnO modified by CV and EV respectively, rendering the power conversion efficiency up to 8.80% and 9.06% in comparison to the pristine ZnO (7.59%). In conclusion, we demonstrate a facile way to improve morphological and electrical properties of ZnO layer by simply adding CV/EV in sol–gel ZnO to fabricate high performance PSCs.

    关键词: Interfacial modification,Cationic dye,Polymer solar cells,Electron transport,Sol–gel ZnO

    更新于2025-09-12 10:27:22

  • Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles

    摘要: In this study, ZnO/CuO core/shell nanoparticles with ZnO:CuO molar ratios of 1:1 M, 1:2 M and 2:1M were successfully synthesized via sol-gel method. The synthesized nanoparticles were characterized to investigate for their morphology, structure, purity and optical properties. XRD analysis confirmed that the synthesized particles are in nanometer range with average particle size less than 100 nm and was further verified by TEM analysis. SEM images revealed spherical shape of nanoparticles. EDX analysis confirmed the purity of nanoparticles. Near band edge emission and broad green band was recorded in the PL spectra. The bandgap of synthesized nanoparticles was observed in the range 3.85-3.91 eV. Furthermore, the effect of adding an extra active layer of ZnO/CuO core/shell nanoparticles on the performance of organic solar cell with photo active layer electron donor poly(3- hexylthiophene-2,5-diyl) (P3HT) and electron acceptor [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) was studied. Results showed that the added inorganic layer improved the absorption in visible region with increase in surface roughness of the active layer. The power conversion efficiency (PCE) shows improvement by inclusion of inorganic layer prior to organic active layer blend. This increase in PCE was basically due to increase in Voc, Jsc and FF of the fabricated device.

    关键词: solar cell,Core/shell,sol-gel,ZnO/CuO,nanoparticles

    更新于2025-09-11 14:15:04