修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

316 条数据
?? 中文(中国)
  • High-temperature tungsten trioxides obtained by concentrated solar energy: physicochemical and electrochemical characterization

    摘要: High-crystalline tungsten trioxides (WO3) have been synthesized by an environmentally friendly method using concentrated solar energy. The obtained tungsten trioxides (WO3) at three different temperatures and two oxygen mole fractions used for the highest synthesis temperature were characterized by XRD, SEM, and XPS. Higher crystallinity and concentration of W5+ was observed in tungsten trioxides as the synthesis temperature increased. Nevertheless, despite of the different synthetic conditions used, a mixture of two different crystalline structures was observed in all solar-prepared tungsten trioxides: monoclinic and triclinic. Comparing oxides obtained at 1000 °C, higher concentration of W5+ and more defects were found when using lower oxygen molar fraction (WO3-1000-2). Their electrochemical performance was evaluated using cyclic voltammetry (CV) in a conventional three-electrode cell in the following three aqueous electrolytes: acidic, alkaline, and neutral media. In the acidic medium, all the tungsten trioxides showed a capacitive behavior, which was enhanced for oxides obtained at 1000 °C due to a mixed valence of W. On the other hand, in the alkaline medium, a catalytic behavior was detected with higher activity towards hydrogen evolution reaction for the oxide with more defects, higher crystallinity, and monoclinic phase, obtained at 1000 °C and a lower oxygen molar fraction in the synthesis. Finally, in the neutral medium, the oxides synthesized at 1000 °C presented a capacitive behavior whereas the oxides prepared at the lowest temperatures (600 and 800 °C) presented electrochemical processes related to a catalytic behavior for water reduction, which must correspond to their minor concentration of defects, as confirmed by XPS.

    关键词: High-temperature synthesis,Concentrated solar energy,Green synthesis,WO3,Tungsten trioxides

    更新于2025-09-04 15:30:14

  • The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation

    摘要: The development of efficient solar energy conversion to augment other renewable energy approaches is one of the grand challenges of our time. Water splitting, or the disproportionation of H2O into energy-dense fuels, H2 and O2, is undoubtedly a promising strategy. Solar water splitting involves the concerted transfer of four electrons and four protons, which requires the synergistic operation of solar light harvesting, charge separation, mass and charge transport, and redox catalysis processes. It is unlikely that individual materials can mediate the entire sequence of charge and mass transport as well as energy conversion processes necessary for photocatalytic water splitting. An alternative approach, emulating the functioning of photosynthetic systems, involves the utilization of hybrid systems wherein different components perform the various functions required for solar water splitting. The design of such hybrid systems requires the multiple components to operate in lockstep with optimal thermodynamic driving forces and interfacial charge transfer kinetics.

    关键词: hybrid systems,water splitting,photocatalytic,charge transfer,solar energy conversion

    更新于2025-09-04 15:30:14

  • Dual-Phase Molybdenum Nitride Nanorambutans for Solar Steam Generation under One Sun Illumination

    摘要: Water evaporation and steam production have been recognized to be considerably crucial due to the vast applications, ranging from waste water treatment, water purification, to alternative green energy solutions by water splitting, catalysis, and in-door heating. Albeit the big variety of photothermal conversion materials (PCMs) developed for this purpose, certain drawbacks, e.g. high cost, complicated synthesis, weak/narrow absorbance, bulkiness, and low evaporation rate, have hindered the application potential. Herein, we report the dual-phase molybdenum nitride nanorambutans, synthesized by a facile method, for solar steam generation. Not only the inherent properties, including strong full-spectrum absorbance, high-efficiency photothermal conversion, and super-hydrophilicity, benefit their water evaporation performance, the interconnected open mesopores of the nanorambutans further boost their capability of light harvesting and water/vapor transportation. Solar energy conversion efficiency of ~97% under one sun together with excellent cycling stability has been demonstrated. In the desalination systems, integrating with the high salt rejection rate, the nanorambutans film can produce a water evaporation rate as high as ~1.70 kg m?2 h?1 with an efficiency of ~98%. Besides its compact size, the record-breaking water evaporation performance of these nanorambutans has exceeded the previous best inorganic PCM. This work introduces molybdenum nitride as a new PCM for efficient solar steam generation and all applications that can benefit from highly localized heating from nano to macro scale.

    关键词: desalination,water evaporation,photothermal conversion,molybdenum nitride,solar energy

    更新于2025-09-04 15:30:14

  • Iodide Photoredox and Bond Formation Chemistry

    摘要: Iodide redox chemistry is intimately coupled with the formation and breaking of chemical bonds that are relevant to emerging solar energy technologies. In this Account, recent advances in dye-sensitized iodide oxidation chemistry in organic solutions are described. Here RuII sensitizers with high cationic charge, tuned reduction potentials, and specific iodide receptor site(s) are shown to self-assemble in organic solvents and yield structures that rapidly oxidize iodide and generate I?I bonds when illuminated with visible light. These studies provided new insights into the fascinating behavior of our most polarizable and easily oxidized monatomic anion.

    关键词: iodide,bond formation,RuII sensitizers,photoredox,solar energy

    更新于2025-09-04 15:30:14

  • Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis

    摘要: To meet the ever-increasing global demand for energy, conversion of solar energy to chemical/thermal energy is very promising. Light-mediated catalysis, including photocatalysis (organic transformations, water splitting, CO2 reduction, etc.) and photothermal catalysis play key roles in solar to chemical/thermal energy conversion via the light?matter interaction. The major challenges in traditional semiconductor photocatalysts include insufficient sunlight utilization, charge carrier recombination, limited exposure of active sites, and particularly the difficulty of understanding the structure?activity relationship. Metal?organic frameworks (MOFs), featuring semiconductor-like behavior, have recently captured broad interest toward photocatalysis and photothermal catalysis because of their well-defined and tailorable porous structures, high surface areas, etc. These advantages are beneficial for rational structural modulation for improved light harvesting and charge separation as well as other effects, greatly helping to address the aforementioned challenges and especially facilitating the establishment of the structure?activity relationship. Therefore, it is increasingly important to summarize this research field and provide in-depth insight into MOF-based photocatalysis and photothermal catalysis to accelerate the future development.

    关键词: Charge separation,Photocatalysis,Light harvesting,Solar energy conversion,Photothermal catalysis,Metal?organic frameworks

    更新于2025-09-04 15:30:14

  • Rational design of yolk–shell nanostructures for photocatalysis

    摘要: Photocatalysis is a promising route to convert solar energy into chemical energy directly, providing an alternative solution to environment and natural resource problems. Theoretically, all photocatalytic reactions are driven by charge carriers whose behavior can be divided into charge generation, separation, migration and surface reactions. Efficiencies of charge utilization in every step determine the overall performance of photocatalysis. Yolk–shell (YS) structures can provide an ideal platform for the efficient utilization of charge carriers. Typically, a YS structure is constructed from a hollow shell and an inner core, which can enhance light scattering in the hollow space and provide a large surface to create sufficient active sites, both of which can significantly improve the efficacy of charge utilization. Additionally, many strategies can be adopted to modify the YS structure for further enhancement of charge behaviors in every step. Existing reviews about YS structures mainly concentrate on the universality of the application of YSs, while the strategies to improve photocatalytic performance based on YSs have not been elaborately illustrated. This review describes the classification, synthesis, formation mechanism of YS structures and the rational regulation of the behaviors of photogenerated charge carriers, aiming at their effective utilization based on YS structures in heterogeneous photocatalytic reactions.

    关键词: Charge carriers,Heterogeneous photocatalytic reactions,Solar energy conversion,Yolk–shell structures,Photocatalysis

    更新于2025-09-04 15:30:14