- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Theoretical and experimental insights into the effects of oxygen-containing species within CNTs towards triiodide reduction
摘要: Heteroatom-doped micro/nano-structured carbon materials feature unique superiorities for replacement of noble metal Pt counter electrode (CE) in dye-sensitized solar cells. Nevertheless, the effects of oxygen-containing species on/within carbon matrix on its electrocatalytic activity are seldomly considered and concerned, which will be hindered by a trade off between oxygen defects and conductivity. Herein, we present activated carbon nanotubes (P-CNTs) with abundant active edge sites and oxygen species for simultaneous achieving the activation of sidewalls and open ends. Also, the positive effects of oxygen species are decoupled by experimental data together with theoretical analysis. When capitalizing on the P-CNTs as the CE of DSSCs, the device delivers a high power conversion efficiency of 8.35% and an outstanding electrochemical stability, outperforming that of Pt reference (8.04%). The density functional theory calculation reveals that compared with the carboxylic groups, the hydroxyl groups and carbonyl groups on the surface of CNTs can greatly reduce the ionization energy of reaction, accelerate the electron transfer from external circuit to triiodide, thus being responsible for an enhanced electrocatalytic performance. This work demonstrates that a certain amount of oxygen atoms within carbon materials is also indispensable for the improvement in the reactivity of the triiodide.
关键词: Counter electrodes,Triiodide reduction,Defective carbon nanotubes,Ionization energy,Electrochemical stability,Oxygen species
更新于2025-09-23 15:23:52
-
A self-illuminating nanoparticle for inflammation imaging and cancer therapy
摘要: Nanoparticles have been extensively used for inflammation imaging and photodynamic therapy of cancer. However, the major translational barriers to most nanoparticle-based imaging and therapy applications are the limited depth of tissue penetration, inevitable requirement of external irradiation, and poor biocompatibility of the nanoparticles. To overcome these critical limitations, we synthesized a sensitive, specific, biodegradable luminescent nanoparticle that is self-assembled from an amphiphilic polymeric conjugate with a luminescent donor (luminol) and a fluorescent acceptor [chlorin e6 (Ce6)] for in vivo luminescence imaging and photodynamic therapy in deep tissues. Mechanistically, reactive oxygen species (ROS) and myeloperoxidase generated in inflammatory sites or the tumor microenvironment trigger bioluminescence resonance energy transfer and the production of singlet oxygen (1O2) from the nanoparticle, enabling in vivo imaging and cancer therapy, respectively. This self-illuminating nanoparticle shows an excellent in vivo imaging capability with suitable tissue penetration and resolution in diverse animal models of inflammation. It is also proven to be a selective, potent, and safe antitumor nanomedicine that specifically kills cancer cells via in situ 1O2 produced in the tumor microenvironment, which contains a high level of ROS.
关键词: photodynamic therapy,cancer therapy,inflammation imaging,reactive oxygen species,myeloperoxidase,bioluminescence resonance energy transfer,nanoparticles
更新于2025-09-23 15:22:29
-
Multispectral Airborne LiDAR Data in the Prediction of Boreal Tree Species Composition
摘要: Multispectral light detection and ranging (LiDAR) instruments, such as Optech Titan, record intensities at multiple wavelengths and these intensities can be used for tree species prediction in the same way as multispectral image data. In this paper, our main objective was to compare the accuracy of tree species prediction in a boreal forest area using multispectral LiDAR, the 1064-nm wavelength channel ('unispectral LiDAR'), and unispectral LiDAR with auxiliary aerial image data. We also evaluated the effect of the widely used intensity range correction method. We classified the main tree species of field plots using linear discriminant analysis (LDA) and predicted the species-specific volume proportions (%) for Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and broadleaved trees using the k-nearest neighbor imputation. The effect of intensity correction on prediction errors for the dominant tree species was evaluated using optimal parameters derived from: 1) minimal intensity difference between flight lines; 2) parameters suggested by theory; and 3) uncorrected data. Although the range correction increased the classification accuracy slightly, it was observed to be ambiguous, and not consistent with theory for canopy echoes. Regardless, the intensity values were useful for the prediction of dominant tree species and species' volume proportions. The results for the dominant tree species classification using multispectral LiDAR [overall accuracy (OA) 88.2%, kappa 0.79] were comparable to the use of unispectral LiDAR and aerial images (OA 89.1%, kappa 0.81). We conclude that the multispectral LiDAR may become a useful tool in operational species-specific forest inventories.
关键词: laser backscatter intensity,k-nearest neighbor (k-NN),Intensity correction,linear discriminant analysis (LDA),multispectral airborne laser scanning,tree species classification
更新于2025-09-23 15:22:29
-
Enhancement of cytotoxic effect on human head and neck cancer cells by?combination of photodynamic therapy and sulforaphan
摘要: Photodynamic therapy (PDT) is a method to treat cancers using photosensitizer and light. PDT has been tried for several tumors. However, the clinical applications are limited by the toxicity of photosensitizer and narrow effect. Sulforaphane (SFN) is a material of isothiocyanate group and known to have anticancer effect. We evaluated the cytotoxic effect of PDT combined with SFN on human head and neck cancer cells. We measured the cell viability, extent of apoptosis and necrosis, reactive oxygen species (ROS) generation and caspase activation. Cell viability was decreased significantly by combination treatment. Cellular apoptosis and necrosis were increased in combination treatment compared to SFN or PDT. ROS generation was also higher in combination treatment than single treatment. In combination treatment group, apoptosis and necrosis were decreased by administration of sodium azide (SA) which is scavenger of ROS. Increased caspase activation in combination treatment was also inhibited by SA. Combination of PDT and SFN led to enhanced cytotoxic effect on head and neck cancer cells. Combination treatment promoted the ROS generation, which induced cell death through activation of caspase pathway.
关键词: Sulforaphane,Reactive oxygen species,Head and neck cancer,Photodynamic therapy
更新于2025-09-23 15:22:29
-
Heteroleptic Ir(III)N6 Complexes with Long-Lived Triplet Excited States and In Vitro Photobiological Activities
摘要: A series of cationic heteroleptic iridium(III) complexes bearing tris-diimine ligands [Ir(phen)2(R-phen)]3+ (R-phen = phenanthroline (1), 3,8-diphenylphenanthroline (2), 3,8-dipyrenylphenanthroline (3), 3-phenylphenanthroline (4), 3-pyrenylphenanthroline (5), and 3,8-diphenylethynylphenanthroline (6)) were synthesized and characterized. These complexes possessed phen ligand-localized 1π,π* transitions below 300 nm, and charge transfer (1CT) and/or 1π,π* transitions between 300 and 520 nm. In 1, 2, 4, and 6, the low-energy bands were mixed 1CT/1π,π*. However, the increased π-donating ability of the pyrenyl substituent(s) in 3 and 5 split the low-energy bands into a pyrene-based 1π,π* transition at 300-380 nm and an intraligand charge transfer (1ILCT) transition at 380-520 nm. All complexes were emissive at room temperature in CH3CN, but the parentage of the emitting state varied depending on the R substituent(s). Complex 1 exhibited predominantly phen ligand-localized 3π,π* emission mixed with metal-to-ligand charge transfer (3MLCT) character, while the emission of 2, 4, and 6 was predominantly from the excited-state with 3π,π*/3ILCT/3MLCT character. The emission from 3 and 5 was dominated by pyrene-based 3π,π* states mixed with 3ILCT character. The different natures of the lowest triplet excited states were also reflected by the different spectral features and lifetimes of the triplet transient absorption of these complexes. Complexes 3 and 5 had singlet oxygen quantum yields as high as 81 and 72%, respectively. Both gave submicromolar phototoxicities toward cancer cells (SK-MEL-28 human melanoma) and bacteria (S. aureus and S. mutans) with visible light activation (and marginal to no photobiological activity with red light). Their visible-light phototherapeutic indices (PIs) toward SK-MEL-28 cells were 248 for 3 and >435 for 5; PIs were lower in bacteria (≤62) due to their inherent antimicrobial activities. Both complexes were shown to produce substantial amounts of intracellular reactive oxygen species (ROS), which may account for their photobiological activities.
关键词: photophysics,photodynamic therapy,long-lived triplet excited state,antimicrobial,photobiological activities,reactive oxygen species,heteroleptic Ir(III) trisdiimine complexes
更新于2025-09-23 15:22:29
-
Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters
摘要: The modification of semiconductor nanostructures with metallic nanocomponents can promote the separation of electron/hole from photoexited semiconductors by forming heterojunctions, thus exhibit enhanced photocatalytic activities and potential applications. In this study, Pt-based NPs, including Pt, PtCu, and PtCuCo are employed as model co-catalysts to comparatively study their capability to enhance the photocatalytic activity of TiO2 nanosheets. It was found that each of Pt, PtCu, and PtCuCo can greatly enhance the photocatalytic activity of TiO2 toward degradation of organic dyes. Using electron spin resonance spectroscopy, we demonstrated that deposition of Pt-based NPs resulted in more production of reactive oxygen species including hydroxyl radicals, superoxide, and singlet oxygen. The enhancing effects of Pt-based NPs on generation of ROS and photocatalytic activity showed same trend: PtCuCo > PtCu > Pt. The mechanism underlying the enhancement differences in Pt-based NPs may be mainly related to electronic structure change of Pt in alloying with Cu and Co. These results are valuable for designing hybrid nanomaterials with high photocatalytic efficiency for applications in water purification and antibacterial products.
关键词: photocatalysis,hybrid nanostructures,reactive oxygen species,PtCuCo,TiO2
更新于2025-09-23 15:22:29
-
UV spectroscopic properties of principal inorganic ionic species in natural waters
摘要: The UV spectroscopic properties of the principal inorganic ionic species in natural waters were investigated at 25 °C in the wavelength range 195 to 280 nm. All absorbing species were identified and the corresponding molar absorptivities were determined experimentally. No cations were found to influence the UV spectrum. Relatively high molar absorptivities were observed for iodide, bromide and nitrate. The UV spectra of natural waters were calculated using the molar absorptivities and compared with observed signals from synthetic samples. This enabled the dominant components to be determined. Both bromide and nitrate have significant influence on the UV spectrum of natural waters. The study results can be used to predict the UV spectra of ionic solutions and thus evaluate the suitability of UV spectroscopy for given measurement projects.
关键词: molar absorptivities,principal ionic species,UV spectroscopy,natural waters
更新于2025-09-23 15:22:29
-
Differentiation of Taxonomically Closely Related Species of the Genus Acinetobacter Using Raman Spectroscopy and Chemometrics
摘要: In recent years, several efforts have been made to develop quick and low cost bacterial identification methods. Genotypic methods, despite their accuracy, are laborious and time consuming, leaving spectroscopic methods as a potential alternative. Mass and infrared spectroscopy are among the most reconnoitered techniques for this purpose, with Raman having been practically unexplored. Some species of the bacterial genus Acinetobacter are recognized as etiological agents of nosocomial infections associated with high rates of mortality and morbidity, which makes their accurate identification important. The goal of this study was to assess the ability of Raman spectroscopy to discriminate between 16 Acinetobacter species belonging to two phylogroups containing taxonomically closely related species, that is, the Acinetobacter baumannii-Acinetobacter calcoaceticus complex (six species) and haemolytic clade (10 species). Bacterial spectra were acquired without the need for any sample pre-treatment and were further analyzed with multivariate data analysis, namely partial least squares discriminant analysis (PLSDA). Species discrimination was achieved through a series of sequential PLSDA models, with the percentage of correct species assignments ranging from 72.1% to 98.7%. The obtained results suggest that Raman spectroscopy is a promising alternative for identification of Acinetobacter species.
关键词: species,bacteria,vibrational spectroscopy,typing,haemolytic clade
更新于2025-09-23 15:22:29
-
Adsorption Dynamics of Redox Active Species onto Polarized Surfaces of Sensitized NiO
摘要: Mesoporous NiO films were deposited by means of a screen printing technique onto fluorine-doped tin oxide transparent electrodes and consequently sensitized with Erythrosin B (EryB) dye. The obtained colored NiO material was used as a working electrode in a three-electrode cell to study the evolution of the triple semiconductor/dye/electrolyte interface upon electrochemical polarization in dark conditions. The electrolyte was a solution of I3?/I? in acetonitrile, with the redox couple representing the typical redox shuttle of dye-sensitized solar cells (DSCs). The adopted electrochemical conditions were devised in order to simulate the actual electrical environment of the NiO/dye photocathode in a light-soaked DSC. The use of a benchmark sensitizer EryB and of the most widely used redox mediator I3?/I? is particularly meaningful for the study of the adsorption dynamics and the determination of possible degradative phenomena on the basis of the behavior of numerous analogue systems. Therefore, for the first time, the evolution of the NiO/EryB/I3?/I? multiple interface was investigated combining the electrochemical characterization with ex situ spectroscopic analysis by means of X-ray photoelectron spectroscopy. The resulting picture shows that EryB in the immobilized state promotes the redox processes based on the I3?/I? couple. Moreover, the EryB sensitizer inhibits the phenomena of recombination between the metal oxide semiconductor and the redox couple.
关键词: X-ray photoelectron spectroscopy,Sensitized NiO,Dye-sensitized solar cells,Redox active species,Adsorption dynamics,Polarized surfaces
更新于2025-09-23 15:22:29
-
Oxidation of P700 Ensures Robust Photosynthesis
摘要: In the light, photosynthetic cells can potentially suffer from oxidative damage derived from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs, including cyanobacteria, algae, and plants, manage their photosynthetic systems successfully. In the present article, we review previous research on how these photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in an oxidized state in response to excess light, under high light and low CO2 conditions, to tune the light utilization and dissipate the excess photo-excitation energy in PSI. Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized are diverse among a variety of photoautotrophs, which are evolutionarily optimized for their ecological niche.
关键词: photosynthesis,reactive oxygen species,photoinhibition,P700 oxidation,photosystem I
更新于2025-09-23 15:21:21