- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Microstructural evolution and geometrical properties of TiB2 metal matrix composite protrusions on hot work tool steel surfaces manufactured by laser implantation
摘要: The laser implantation–named technique aims to address the tribological problems frequently seen on tool surfaces during hot stamping. It is based on the creation of elevated dome- or ring-shaped hard structures on the surface of tool steels by a localized dispersing of hard particles. Therefore, a combination of the two distinct approaches that are normally used in surface technology for optimizing friction and wear, i.e., surface texturing and surface material optimization, are realized in one processing step. In experimental studies, a localized dispersing of TiB2 particles in the surface layer of the hot work tool steel X38CrMoV5-3 was considered and compared with punctual laser–remelted textures. The structures (micro-) hardness was measured at top- and cross-sections. With the aid of a scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction the interaction between the hard particles and the substrate material were studied. From the results, an optimal parameter range was identified for laser implantation. To the investigation’s end, the implant geometry was measured by optical microscopy and white light microscopy. Furthermore, a mathematic model was introduced, which allows a prediction of the implant geometry as a response to the laser parameters. It was shown that the implantation of TiB2 particles leads to a significant hardness increase up to 1600 HV1 due to the dispersion of initial particles and an in situ precipitation of new titanium-rich phases. It was possible to create defect-free dome- and ring-shaped microstructures on the surfaces. It was also shown that the implants geometry highly depends on the applied laser parameters. The applied central composite design shows a good agreement with the experimental results.
关键词: TiB2,Laser implantation,Localized laser dispersing,Hot stamping,Surface texturing,Hot work tool steel
更新于2025-09-12 10:27:22
-
Development of Textured Electrode, Index Matching Layer and Nanostructured Materials for Light Trapping inside Photovoltaic devices
摘要: In order to reduce the energy harvesting cost, numerous efforts have been made to replace crystalline silicon solar cells with thin film based solar cells. The device efficiency of thin film photo-voltaic devices needs to be improved. Currently, surface texturing based light trapping technologies have been used to improve the device efficiency of photo-voltaic devices. In this paper, we demonstrate experimentally that surface textured hydrogenated ZnO:Al films as transparent conducting oxide (TCO) electrode and nanostructured materials in solar cells improve the anti-reflection properties of TCO coated glass substrate. These surfaces scatter the incident light inside the active layer of solar cells. Scattering of light on textured and nanostructured surface causes increase in average light path length inside active layer which results in increased absorption coefficient. Amorphous silicon solar cells fabricated on textured TCO layer show increase in device efficiency. Silicon nitride film was used as index matching layer between glass and TCO and increase in transmittance was observed. Silicon nanowires were grown using PECVD for their application in solar cells. Metal (Indium) nanoparticles were used for plasmonic light trapping inside solar cells. It was observed that textured TCO, index matching layer and plasmonic nanoparticles techniques improve the device efficiency while nanowires based devices need more optimization to get higher efficiency.
关键词: Plasmonic Light Trapping,Nano-Particles,Thin Film Solar Cell,Surface Texturing,Silicon Nanowires
更新于2025-09-12 10:27:22
-
Laser surface texturing of titanium with thermal post-processing for improved wettability properties
摘要: The use of lasers to create microstructures on metal surfaces in order to change the wettability properties a material has been widely explored, mainly using ultra-short pulsed lasers working in the femto and picosecond regime. In order to explore a more robust industrial method for the creation of super-hydrophobic surfaces, a fibre based nanosecond pulsed laser has been used to process polished Ti6Al4V samples to produce customised topography. The samples then received a low temperature annealing post-treatment. This, decrease the time needed for reaching the super-hydrophobic point considerably. The nanosecond pulsed laser provides a thermal component in the surface, helping with the creation of micro pillars in the surface morphology. The use of scanning electron microscopy (SEM) with energy dispersive X-Ray analysis (EDX), white light optical profiling, and contact angle measurements were used to characterize and quantify the effects of the surface modification on the wetting properties of the material.
关键词: laser surface texturing.,superhydrophobic,Nanosecond laser,thermal post-processing
更新于2025-09-12 10:27:22
-
[Laser Institute of America ICALEO? 2016: 35th International Congress on Applications of Lasers & Electro-Optics - San Diego, California, USA (October 16–20, 2016)] International Congress on Applications of Lasers & Electro-Optics - Controlling the wettability of stainless steel by surface texturing using a high power femtosecond fiber laser
摘要: In this work, stainless steel samples have been textured by a simple and fast one-step laser process. The particularity of this process is the use of an ultrashort pulsed laser technology, combining a high power pulses at high repetition rate. An improved productivity can thus be considered. Successive ablations by IR laser pulses allow to generate dual-scale surface structures. Hierarchical structures, composed of micro-hills on which are superimposed periodic nano-ripples, have been produced at the repetition rate of 50 kHz, by a repeated irradiation of a crossed pattern of parallel lines. In order to increase the process throughput, repetition rates of 100, 250 and 500 kHz have been tested. After an adaptation of the process parameters, topographies with the same dimensions of structures have been created. The presence of these structures modifies the wetting properties of the material. Immediately after laser irradiation the surface becomes hydrophilic; however this wetting state evolves to become superhydrophobic with contact angles higher than 160° and water droplets unable to adhere to the surface. The temporal evolution of the wettability results from the combination of the surface roughness and the chemical composition of this surface. The modeling of the wetting behavior of water droplet, deposited on grooves structures, shows the enhancement of the initial wettability of the surface.
关键词: wettability,superhydrophobic,femtosecond laser,stainless steel,surface texturing
更新于2025-09-12 10:27:22
-
Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
摘要: Any processing disturbances in laser surface texturing (LST) could compromise the resulting surface topography and their desired functional response. Disturbances such as focal plane offsets and beam incident angle variations are always present in LST processing of 3D parts and can affect the surface morphology. In this research the effects of these laser processing disturbances in producing laser induced surface structures (LIPSS) on CoCrMo alloy substrates were investigated. In particular, these two disturbances were considered as laser processing variables to determine their effects on functional responses of LIPSS treated surfaces, i.e. surface wettability and the proliferation of Saos-2 osteoblast-like cells were evaluated. It was found that the changes of laser processing conditions led to a decrease in surface wettability and Saos-2 cells proliferation. In addition, a correlation between surface wettability and cell proliferation on LIPSS treated surface was identified and conclusions made about the effects of investigated process disturbances on the functional response of LIPSS treated CoCrMo substrates.
关键词: cobalt chrome molybdenum,surface functionalization,laser induced periodic surface structures,osseointegration,laser surface texturing
更新于2025-09-11 14:15:04
-
Influence of Femtosecond Laser Surface Nanotexturing on the Friction Behavior of Silicon Sliding Against PTFE
摘要: The aim of the present work was to investigate the influence of laser-induced periodic surface structures (LIPSS) produced by femtosecond laser on the friction behavior of silicon sliding on polytetrafluoroethylene (PTFE) in unlubricated conditions. Tribological tests were performed on polished and textured samples in air using a ball-on-flat nanotribometer, in order to evaluate the friction coefficient of polished and textured silicon samples, parallel and perpendicularly to the LIPSS orientation. In the polished specimens, the friction coefficient decreases with testing time at 5 mN, while it increases slightly at 25 mN. It also decreases with increasing applied load. For the textured specimens, the friction coefficient tends to decrease with testing time in both sliding directions studied. In the parallel sliding direction, the friction coefficient decreases with increasing load, attaining values similar to those measured for the polished specimen, while it is independent of the applied load in the perpendicular sliding direction, exhibiting values lower than in the two other cases. These results can be explained by variations in the main contributions to friction and in the wear mechanisms. The influence of the temperature increase at the interface and the consequent changes in the crystalline phases of PTFE are also considered.
关键词: silicon,laser surface texturing,friction,LIPSS,PTFE,laser-induced periodic surface structures
更新于2025-09-11 14:15:04
-
Experimental and Numerical Investigation of Surface Texturing 316L Stainless Steel by Laser Shock Processing
摘要: Surface texturing is considered as a promising method to reduce friction coefficient and improve wear resistance of frictional pairs. In this study, laser peen texturing (LPT) based on laser shock process is proposed to fabricate dimple array on 316L stainless steel. LTP experiments are carried out to investigate the geometrical characteristics of the micro-dimple. It is shown that LPT is capable of fabricating micro-dimples with good repeatability. Numerical simulation based on finite element method is conducted to further study the process of LPT. It is found that the dimple depth obtained from numerical simulation shows a good agreement with that measured from experiments. Moreover, by means of stress analysis, it is shown that residual compressive stress exists in the specimen, which is supposed to be helpful to improve the triboligical performance of frictional pairs.
关键词: friction reduction,wear resistance,316L stainless steel,surface texturing,laser shock processing
更新于2025-09-11 14:15:04
-
The effect of laser surface texturing to inhibit stick-slip phenomenon in sliding contact
摘要: Stick-slip phenomenon in some mechanical structures, especially in machine tools, should be eliminated or inhibited, otherwise the vibration will occur and the position error will inevitably be obtained. In this study, different kinds of surface textures were carried out on the lower samples of the pin-on-disk contact. The starting process of the machine tools was simulated on an Rtec-Multi-Function Tribometer. The stick-slip phenomenon was observed in each kind of samples. However, the stick-slip phenomenon of smooth sample is larger than that of the textured samples. The bulge-textured surface shows excellent anti-stick-slip effect, and the critical stick-slip speed of bulge-textured surface is 95.9% lower than that of the smooth surface. Simultaneously, the anti-stick-slip effect of bulge-textured surface is superior to that of the dent-shaped texturing surface. What’s more, when the amount of lubricating oil is 15 mL, the standard deviation values of friction coefficient and critical speed of stick-slip phenomena (rotational speed when the standard deviation of friction coefficient is abrupt) are the lowest at different rotational speeds. It can be predicted that the bulge textures and adequate amount of lubricating oil (15 mL) can eliminate stick-slip phenomenon when processed in the surface of the machine tool because the bulge textures and adequate amount of lubricating oil can improve frictional state effectively and avoid the slip of the contact surface.
关键词: machine tool,laser surface texturing,Stick-slip phenomenon,critical stick-slip speed,bulge texture
更新于2025-09-11 14:15:04
-
Effects of laser surface texturing on tribological properties of Ti-6Al-4V in hydroxyethyl-cellulose water-based lubrication
摘要: Purpose – This paper aims to investigate the effect of laser surface texturing on the tribological performance of Ti-6Al-4V disks sliding against Si3N4 balls under hydroxyethyl-cellulose water-based lubrication. The friction coefficients and wear losses of textured and untextured disks were measured and compared. The results indicate that the texture patterns can lead to reduction of friction and wear in the condition of water-based lubrication. Design/methodology/approach – Solutions of hydroxyethyl cellulose were used as water-based lubricants. To find the optimal laser texturing parameters for the best performance enhancement, three line-like patterns were fabricated onto the disks and three machining parameters were used for each type of pattern. Tribological tests were conducted in rotation sliding with ball-on-disk contact configuration on UMT-2. Findings – A higher density of texture lines leads to a larger friction and wear reduction. Compared with untextured disks, the friction coefficient is reduced from 0.043 to 0.028 for textured disks. Some unworn parts were detected in the contact region of the balls against textured disks, which were not found on the balls against untextured disks. The worn surfaces indicated that periodic geometry of the contact track was rebuilt during run-in period, which was beneficial for the formation of lubricant films. Originality/value – In this work, laser surface texturing was used to reduce the friction and wear of Ti-6Al-4V specimens in water-based lubrication, which can be used to improve the tribological performance of Ti-6Al-4V components in mechanical equipment.
关键词: Ti-6Al-4V alloy,Hydroxyethyl-cellulose,Friction reduction,Laser surface texturing,Water-based lubrication
更新于2025-09-09 09:28:46
-
Fabrication and tribological characterization of deformation-resistant nano-textured surfaces produced by two-photon lithography and atomic layer deposition
摘要: In this study, we demonstrated a novel strategy for fabricating deformation-resistant nano-textured surfaces. Ordered arrays of IP-DIP photoresist nanodots of various diameters were first fabricated using two-photon lithography. IP-DIP/Al2O3 core-shell nanostructures (CSNs) were then formed by conformally coating the nanodots with Al2O3 of different thicknesses via atomic layer deposition (ALD). The CSNs showed 85% lower coefficients of friction than the bare IP-DIP nanodots and exhibited minimal nanostructure deformation at contact pressures greater than 20 GPa. The IP-DIP/Al2O3 CSNs also have lower adhesion forces than the bare IP-DIP nanodots. The excellent deformation resistance and superior tribological properties of these CSNs demonstrate that the combination of two-photon lithography and ALD is a very promising solution to tribological issues in miniaturized systems.
关键词: Surface Texturing,Atomic Layer Deposition.,Two-Photon Lithography,Core-Shell Nanostructures
更新于2025-09-04 15:30:14