修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

247 条数据
?? 中文(中国)
  • Virtual Sensing of Photovoltaic Module Operating Parameters

    摘要: The phenomenon of soil salinization in semi-arid regions is getting amplified and accentuated by both anthropogenic practices and climate change. Land salinization mapping and monitoring using conventional strategies are insufficient and difficult. Our work aims to study the potential of synthetic aperture radar (SAR) for mapping and monitoring of the spatio-temporal dynamics of soil salinity using interferometry. Our contribution in this paper consists of a statistical relationship that we establish between field salinity measurement and InSAR coherence based on an empirical analysis. For experimental validation, two sites were selected: 1) the region of Mahdia (central Tunisia) and 2) the plain of Tadla (central Morocco). Both sites underwent three ground campaigns simultaneously with three Radarsat-2 SAR image acquisitions. The results show that it is possible to estimate the temporal change in soil electrical conductivity (EC) from SAR images through the InSAR technique. It has been shown that the radar signal is more sensitive to soil salinity in HH polarization using a small incidence angle. However, for the HV polarization, a large angle of incidence is more suitable. This is, under considering the minimal influence of roughness and moisture surfaces, for a given InSAR coherence.

    关键词: interferometric synthetic aperture radar (InSAR) coherence,polarimetric synthetic aperture radar (SAR),soil salinity,Electrical conductivity (EC)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP) - London, United Kingdom (2019.12.11-2019.12.13)] 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP) - Single Frequency Blue Lasers

    摘要: The phenomenon of soil salinization in semi-arid regions is getting amplified and accentuated by both anthropogenic practices and climate change. Land salinization mapping and monitoring using conventional strategies are insufficient and difficult. Our work aims to study the potential of synthetic aperture radar (SAR) for mapping and monitoring of the spatio-temporal dynamics of soil salinity using interferometry. Our contribution in this paper consists of a statistical relationship that we establish between field salinity measurement and InSAR coherence based on an empirical analysis. For experimental validation, two sites were selected: 1) the region of Mahdia (central Tunisia) and 2) the plain of Tadla (central Morocco). Both sites underwent three ground campaigns simultaneously with three Radarsat-2 SAR image acquisitions. The results show that it is possible to estimate the temporal change in soil electrical conductivity (EC) from SAR images through the InSAR technique. It has been shown that the radar signal is more sensitive to soil salinity in HH polarization using a small incidence angle. However, for the HV polarization, a large angle of incidence is more suitable. This is, under considering the minimal influence of roughness and moisture surfaces, for a given InSAR coherence.

    关键词: Electrical conductivity (EC),polarimetric synthetic aperture radar (SAR),soil salinity,interferometric synthetic aperture radar (InSAR) coherence

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE) - Osaka, Japan (2019.10.15-2019.10.18)] 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE) - A Universal VLC Modulator for Retrofitting LED Lighting and Signage

    摘要: The Advanced Radar Geosynchronous Observation System is proposed to be a multiple-input–multiple-output synthetic aperture radar (SAR) system hosted on a swarm of minisatellites in quasi-geostationary orbits. The system is made of N iso-frequency sensors, each of them transmitting and receiving the signals. The system would combine the continuous imaging capabilities of a geostationary SAR, gaining a factor N 2 in signal-to-noise ratio (SNR). The real aperture would be achievable in ~40 min, enabling applications so far unseen, such as monitoring fast deformations, landslides, and other applications for emergency and security. Still, the SNR of the long acquisition time would be conserved. The optimal design of the swarm is addressed, in order to trade resolution, coverage, and revisit time.

    关键词: synthetic aperture radar (SAR),spaceborne radar,Earth Observing System,radar interferometry,multiple-input–multiple-output (MIMO) radar

    更新于2025-09-19 17:13:59

  • [IEEE 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - Rome, Italy (2019.6.17-2019.6.20)] 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - A Singular Value Decomposition Based Approach for Classifying Concealed Objects in Short Range Polarimetric Radar Imaging

    摘要: In current research one of the main challenges in short range synthetic aperture radar (SAR) is electrically small structures and objects, which tend to unclear reinforced or through the wall objects, object orientation angle, and obscure contribution to extract the position of concealed multiple small objects. In this paper, ultra-wide-band (UWB) polarimetric radar was used to study reinforced objects and for estimation of object angle at short range. Electrically small 1D periodic mesh, 2D periodic meshes and di?erently oriented small objects or meshes could not be distinguished in conventional SAR images. A radar system with transmit and receive antennae mounted on a two dimensional scanning grid was used. The aim is non-destructive testing of built structures, in concrete slab manufacturing and for use in the renovation process. UWB short range radar data and images corresponding to di?erent polarization states were analysed by using singular value decomposition (SVD). To perform decomposition, the proposed approach applies SVD to image data matrices produced from the back projection algorithm (BPA) to classify the di?erent objects and identify the object angle. Then, sets of singular-components of di?erent polarization states are analysed to classify objects. Also, the BPA algorithm is performed to construct the object images from the polarimetric radar signals. The object re?ection varied with the polarimetric state of the UWB radar, which contributes to di?erent object signatures (i.e., object intensity) since the object signature depends on the orientation, the size, and the number of objects. Object orientation with respect to the radar system and object anisotropy could be determined from the ratio of the di?erent polarimetric singular-components. This proposed complex data analysis method demonstrates the usefulness of the SVD using BPA in extracting more information about and for classifying an object.

    关键词: back projection algorithm (BPA),object classification,ultra-wide-band (UWB) polarimetric radar,Synthetic aperture radar (SAR),singular value decomposition (SVD)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Compound Semiconductor Week (CSW) - Nara, Japan (2019.5.19-2019.5.23)] 2019 Compound Semiconductor Week (CSW) - GaSb/GaAs quantum nanostructures for intermediate band solar cell under high sunlight concentration

    摘要: This paper introduces a framework for robust parameter estimation in multipass interferometric synthetic aperture radar (InSAR), such as persistent scatterer interferometry, SAR tomography, small baseline subset, and SqueeSAR. These techniques involve estimation of phase history parameters with or without covariance matrix estimation. Typically, their optimal estimators are derived on the assumption of stationary complex Gaussian-distributed observations. However, their statistical robustness has not been addressed with respect to observations with nonergodic and non-Gaussian multivariate distributions. The proposed robust InSAR optimization (RIO) framework answers two fundamental questions in multipass InSAR: 1) how to optimally treat images with a large phase error, e.g., due to unmolded motion phase, uncompensated atmospheric phase, etc.; and 2) how to estimate the covariance matrix of a non-Gaussian complex InSAR multivariate, particularly those with nonstationary phase signals. For the former question, RIO employs a robust M-estimator to effectively downweight these images; and for the latter, we propose a new method, i.e., the rank M -estimator, which is robust against non-Gaussian distribution. Furthermore, it can work without the assumption of sample stationarity, which is a topic that has not previously been addressed. We demonstrate the advantages of the proposed framework for data with large phase error and heavily tailed distribution, by comparing it with state-of-the-art estimators for persistent and distributed scatterers. Substantial improvement can be achieved in terms of the variance of estimates. The proposed framework can be easily extended to other multipass InSAR techniques, particularly to those where covariance matrix estimation is vital.

    关键词: Differential interferometric synthetic aperture radar (D-InSAR),robust estimation,rank covariance matrix,robust InSAR optimization (RIO),M -estimator,SAR interferometry (InSAR)

    更新于2025-09-19 17:13:59

  • Coincidence-Pumping Upconversion Detector Based on Passively Synchronized Fiber Laser System

    摘要: The Sentinel-1A is the first of two satellites that composes the Sentinel-1 radar mission. Both satellites operate a C-band synthetic aperture radar (SAR) system to give continuity to the European SAR program. SAR is a flexible sensor able to fulfil users/applications requirements in terms of resolution and coverage thanks to different operational modes and polarizations. With the in-orbit availability of very-high-resolution X-band SAR sensors, the Sentinel-1 satellites have been designed to achieve wide coverage at medium to high resolution. The interferometric wide swath (IWS) mode implemented with the terrain observation with progressive scan (TOPS) technique is the standard acquisition mode over European waters and land masses. IWS in dual-polarization (VV/VH) combination offers 250-km swath at 5 m × 20 m (range × azimuth) spatial resolution. These specifications are in line with the needs of the European Maritime and Security Agency (EMSA) for oil spill and ship detection applications included in the CleanSeaNet program. The main goals of this paper are: assessment of medium-to-high-resolution C-band Sentinel-1 data with very-high-resolution X-band TerraSAR-X data for maritime targets detection; synergetic use of multiplatforms satellite SAR data for target features extraction; evaluation of polarimetric target detectors for the available co-polarization and cross-polarization Sentinel-1A IWS VV/VH products. The objectives are achieved by means of real, almost coincident C-band and X-band SAR data acquired by Sentinel-1A and TerraSAR-X satellites over Gulf of Naples and Catania (South Italy). Furthermore, the obtained results are supported by recorded ground truth vessel reports via terrestrial automatic identification system (AIS) stations located in the area.

    关键词: multipolarization,targets detection,Multifrequency,synthetic aperture radar (SAR)

    更新于2025-09-19 17:13:59

  • Low-Complexity Power-Balancing-Point Based Optimization for Photovoltaic Differential Power Processing

    摘要: With the steadily increasing spatial resolution of synthetic aperture radar images, the need for a consistent but locally adaptive image enhancement rises considerably. Numerous studies already showed that adaptive multilooking, able to adjust the degree of smoothing locally to the size of the targets, is superior to uniform multilooking. This study introduces a novel approach of multiscale and multidirectional multilooking based on intensity images exclusively but applicable to an arbitrary number of image layers. A set of 2-D circular and elliptical ?lter kernels in different scales and orientations (named Schmittlets) is derived from hyperbolic functions. The original intensity image is transformed into the Schmittlet coef?cient domain where each coef?cient measures the existence of Schmittlet-like structures in the image. By estimating their signi?cance via the perturbation-based noise model, the best-?tting Schmittlets are selected for image reconstruction. On the one hand, the index image indicating the locally best-?tting Schmittlets is utilized to consistently enhance further image layers, e.g., multipolarized, multitemporal, or multifrequency layers, and on the other hand, it provides an optimal description of spatial patterns valuable for further image analysis. The ?nal validation proves the advantages of the Schmittlets over six contemporary speckle reduction techniques in six different categories (preservation of the mean intensity, equivalent number of looks, and preservation of edges and local curvature both in strength and in direction) by the help of four test sites on three resolution levels. The additional value of the Schmittlet index layer for automated image interpretation, although obvious, still is subject to further studies.

    关键词: image analysis,image reconstruction,image representations,image edge analysis,digital ?lters,Adaptive ?lters,image enhancement,synthetic aperture radar (SAR)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) - Pattaya, Chonburi, Thailand (2019.7.10-2019.7.13)] 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) - The Application of New Boundary Equations with the Maximum Power Point Tracking Model of Photovoltaic Module by Particle Swarm Optimization Method

    摘要: A novel design concept of multimode ?ltering antenna, which is realized by integrating a multimode resonator and an antenna, has been applied to the design of dual-polarized antenna arrays for achieving a compact size and high performance in terms of broad bandwidth, high-frequency selectivity and out-of-band rejection. To verify the concept, a 2 × 2 array at C-band is designed and fabricated. The stub-loaded resonator (SLR) is employed as the feed of the antenna. The resonant characteristics of SLR and patch as well as the coupling between them are presented. The method of designing the integrated resonator-patch module is explained. This integrated design not only removes the need for separated ?lters and traditional 50-Ω interfaces but also improves the frequency response of the module. A comparison with the traditional patch array has been made, showing that the proposed design has a more compact size, wider bandwidth, better frequency selectivity, and out-of-band rejection. Such low-pro?le light weight broadband dual-polarized arrays are useful for space-borne synthetic aperture radar (SAR) and wireless communication applications. The simulated and measured results agree well, demonstrating a good performance in terms of impedance bandwidth, frequency selectivity, isolation, radiation pattern, and antenna gain.

    关键词: Antenna array,broadband,?ltering antenna,dual-polarization,synthetic aperture radar (SAR),stub-loaded resonator (SLR)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - CAOL 2019 Cover Page

    摘要: With the steadily increasing spatial resolution of synthetic aperture radar images, the need for a consistent but locally adaptive image enhancement rises considerably. Numerous studies already showed that adaptive multilooking, able to adjust the degree of smoothing locally to the size of the targets, is superior to uniform multilooking. This study introduces a novel approach of multiscale and multidirectional multilooking based on intensity images exclusively but applicable to an arbitrary number of image layers. A set of 2-D circular and elliptical ?lter kernels in different scales and orientations (named Schmittlets) is derived from hyperbolic functions. The original intensity image is transformed into the Schmittlet coef?cient domain where each coef?cient measures the existence of Schmittlet-like structures in the image. By estimating their signi?cance via the perturbation-based noise model, the best-?tting Schmittlets are selected for image reconstruction. On the one hand, the index image indicating the locally best-?tting Schmittlets is utilized to consistently enhance further image layers, e.g., multipolarized, multitemporal, or multifrequency layers, and on the other hand, it provides an optimal description of spatial patterns valuable for further image analysis. The ?nal validation proves the advantages of the Schmittlets over six contemporary speckle reduction techniques in six different categories (preservation of the mean intensity, equivalent number of looks, and preservation of edges and local curvature both in strength and in direction) by the help of four test sites on three resolution levels. The additional value of the Schmittlet index layer for automated image interpretation, although obvious, still is subject to further studies.

    关键词: image analysis,image reconstruction,image representations,image edge analysis,digital ?lters,Adaptive ?lters,image enhancement,synthetic aperture radar (SAR)

    更新于2025-09-19 17:13:59

  • A Phase Calibration Method for Millimeter-Wave Up-Converter Using Electro-Optic Sampling

    摘要: With the steadily increasing spatial resolution of synthetic aperture radar images, the need for a consistent but locally adaptive image enhancement rises considerably. Numerous studies already showed that adaptive multilooking, able to adjust the degree of smoothing locally to the size of the targets, is superior to uniform multilooking. This study introduces a novel approach of multiscale and multidirectional multilooking based on intensity images exclusively but applicable to an arbitrary number of image layers. A set of 2-D circular and elliptical filter kernels in different scales and orientations (named Schmittlets) is derived from hyperbolic functions. The original intensity image is transformed into the Schmittlet coefficient domain where each coefficient measures the existence of Schmittlet-like structures in the image. By estimating their significance via the perturbation-based noise model, the best-fitting Schmittlets are selected for image reconstruction. On the one hand, the index image indicating the locally best-fitting Schmittlets is utilized to consistently enhance further image layers, e.g., multipolarized, multitemporal, or multifrequency layers, and on the other hand, it provides an optimal description of spatial patterns valuable for further image analysis. The final validation proves the advantages of the Schmittlets over six contemporary speckle reduction techniques in six different categories (preservation of the mean intensity, equivalent number of looks, and preservation of edges and local curvature both in strength and in direction) by the help of four test sites on three resolution levels. The additional value of the Schmittlet index layer for automated image interpretation, although obvious, still is subject to further studies.

    关键词: Adaptive filters,digital filters,image analysis,image reconstruction,image representations,image edge analysis,image enhancement,synthetic aperture radar (SAR)

    更新于2025-09-19 17:13:59