- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Triple-Junction Optoelectronic Sensor with Nanophotonic Layer Integration for Single Molecule Level Decoding
摘要: Interest in developing a rapid and robust DNA sequencing platform has surged over the past decade. Various next-/third-generation sequencing mechanisms have been employed to replace the traditional Sanger sequencing method. In sequencing by synthesis (SBS), a signal is monitored by a scanning charge-coupled device (CCD) to identify thousands to millions of incorporated dNTPs with distinctive fluorophores on a chip. Because one reaction site usually occupies dozens of pixels on a CCD detector, a bottleneck related to the bandwidth of CCD imaging limits the throughputs of the sequencing performance and causes tradeoffs among speed, accuracy, read length, and the numbers of reaction sites in parallel. Thus, current research aims to align one reaction site to a few pixels by directly stacking nanophotonic layers (NPLs) onto a CMOS detector to minimize the size of the sequencing platforms and accelerate the processing procedures. This article reports a custom integrated optoelectronic device based on a triple-junction photodiode (TPD) CMOS sensor in conjunction with NPL integration for real-time illumination and detection of fluorescent molecules.
关键词: planar waveguide,nanophotonic layer,CMOS,triple-junction photodiode (TPD),filter,grating
更新于2025-11-25 10:30:42
-
Thermal and Photocatalytic Reactions of Methanol and Acetaldehyde on Pt-Modified Brookite TiO <sub/>2</sub> Nanorods
摘要: The influence of adding Pt on the catalytic and photocatalytic activity of monodispersed brookite phase TiO2 (B-TiO2) nanorods (NRs) was investigated. Pt was deposited on the NRs by photo-deposition in solution and the Pt-modified NRs were characterized using XPS, STEM, and LEIS. The thermal and photocatalytic activity of the Pt-modified NRs were then evaluated using temperature-programmed desorption (TPD) in ultra-high vacuum (UHV). It was found that while Pt primarily acted as a site blocker for thermal reactions, Pt also acted as a recombination center for photogenerated electrons and holes, resulting in suppressed photocatalytic activity. Upon pretreatment with O2, however, the Pt-modified NRs exhibited enhanced photoactivity, indicating that adsorbed oxygen prevents electron-hole recombination by reacting with photogenerated conduction band electrons from the B-TiO2 to produce stable superoxide species on the Pt surface deposits. These results clearly demonstrate how the dynamics of charge carriers at the oxide surface may be altered by metal deposits such as Pt, as well as by the presence of adsorbed species on the metal surface.
关键词: brookite,acetaldehyde,photo-oxidation,TiO2,TPD,UHV,methanol,Pt
更新于2025-09-23 15:21:21
-
Performance enhancement of inverted perovskite solar cells through interface engineering by TPD based bidentate self-assembled monolayers
摘要: Perovskite solar cells (PSCs) have recently appeared as a promising photovoltaic technology and attracted great interest in both photovoltaic industry and academic community. Numerous active researches related to the material processing and operational aspects of device fabrication are under progress since PSCs have a great potential for attaining higher performance compared to that of other solar cell technologies. In particular, interfacial engineering is a crucial issue for obtaining high efficiency in solar cells where perovskite absorber layer is deposited between hole and electron transport layers. In inverted type architecture, PEDOT:PSS is used as both hole transport layer and surface modifier; but unfortunately, this material bears instability due to its acidic nature. Thus, self-assembled monolayers (SAMs) not only are considered as suitable alternative, but also their application is regarded as an efficient and cost effective method to modify electrode surface since it provides a robust and stable surface coverage. In this context, we have employed two novel N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) based SAM molecules to customize indium tin oxide (ITO) surface in inverted type PSCs. Furthermore, fine-tuning of spacer groups enables us to study device performance depending on molecular structure. This study proposes promising materials for anode interface engineering and provides a feasible approach for production of organic semiconductor based SAMs to achieve high performance PSCs.
关键词: Interface,ITO,TPD,Bidentate,Self-assembled monolayer,Perovskite solar cell
更新于2025-09-23 15:21:01
-
CRDS modelling of deuterium release from co-deposited beryllium layers in temperature programmed and laser induced desorption experiments
摘要: Deuterium release from Be/D layers co-deposited using high power impulse magnetron sputtering (HiPIMS) is modelled with rate equations using the CRDS code under conditions of temperature programmed (TPD) and laser induced (LID) Desorption experiments. TPD results are simulated to fit D trapping parameters that are in turn applied to simulate the LID. TPD results are compared to equivalent results from JET-ILW and UCSD samples. HiPIMS samples show a different release behavior compared to UCSD and JET samples, release peaks at comparable heating rates are narrower and cannot be modelled using the same set of parameters. With a particular choice of diffusion-trapping parameters that reproduce the TPD peak positions, modelling of the LID efficiency results in a qualitative agreement with experimental observations. In particular, it is shown that a complete outgassing of low D content samples is not possible during laser heating unless the surface temperature exceeds the Be melting threshold.
关键词: beryllium co-deposits,hydrogen retention,reaction–diffusion,TPD,CRDS,LID
更新于2025-09-23 15:19:57
-
Tunnel oxide passivating electron contacts for high‐efficiency n‐type silicon solar cells with amorphous silicon passivating hole contacts
摘要: Organic photovoltaics (OPVs) consisting of a wide bandgap polymer donor and a nonfullerene acceptor (NFA) have received attention because they can effectively overcome the weaknesses of efficiency and stability for fullerene-based OPVs. One of the NFAs, ITIC, shows an excellent power conversion efficiency, as well as controllable solubility, absorption, crystallinity, and energy level. Thus, high-efficiency OPVs could be achieved by developing polymer donors appropriate for use with ITIC-based OPVs. In this study, the synthesized polymer donor, PBDTT-8ttTPD, containing alkylthieno[3,2-b]thiophene as π-bridge and thieno[3,4-c]pyrrole-4,6(5H)-dione (ttTPD) shows strong absorption with a sharp peak edge at around 700 nm. In addition, the high hole mobility and face-on oriented polymer structures in the blend films make ttTPD the best candidate for the donor in NFA-based OPVs. Notably, the molecular weight of the face-on preferred polymer donor is crucial for determining the power conversion efficiency (PCE) of the NFA-based devices. A high molecular weight improves the π?π stacking ordering, absorption, and nanomorphology of the blend films, resulting in a dramatic PCE improvement from 5.76% to 11.05% compared with that of the fullerene-based OPV device (7.86%).
关键词: organic photovoltaics,nonfullerene acceptors,molecular weight,TPD-based polymer,wide band gap donnor polymer
更新于2025-09-19 17:13:59
-
Understanding the Impact of Side-chain on Photovoltaic Performance in Efficient All-polymer Solar Cells
摘要: In order to understand the impact of side-chain on photovoltaic performance and explore efficient All-polymer solar cells, chemical modifications on donor-acceptor based polymers containing benzo[1,2-b:4,5-b’]dithiophene (BDT) and thieno[3,4-c]pyrrole-4,6-dione (TPD) backbones were performed. Via side-chain fluorination, the molecular design resulted in lower highest occupied molecular orbital (HOMO) energy levels and enhanced backbone planarity. The intermolecular packing and solid-state ordering were found to significantly improve. These factors are considered as key influences for carrier transport. In contrast, introducing a bulky alkylthio substituent group was found to slightly distort the polymer backbone. As a result of the lower HOMO level, PTF8 exhibits an improved open circuit voltage (Voc) compared to the template polymer PT8. However, due to the increased crystallinity and aggregation, PTF8 and PTS8 experience an unfavorable phase separation in polymer-polymer bulk heterojunction blends, hindering the PCE to about 4%. Through introducing alkylthio side-chains and fluorination, the polymer PTFS8 exhibits an extremely low HOMO level (-5.73 eV). These reduced HOMO level limits charge separation between the donor and acceptor polymers. Without any fluorination and alkylthio side-chains, the wide bandgap polymer PT8 exhibits desired HOMO energy levels and crystallinity, delivering a best PCE of 8% together with a high Voc of 1.05 V, displaying its great potential for applications in efficient all-polymer optoelectronic devices.
关键词: BDT-TPD backbone,side-chain,fluorination,All-polymer solar cells,alkylthio substitution,photovoltaic performance
更新于2025-09-12 10:27:22