修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Ytterbium-doped fibre femtosecond laser offers robust operation with deep and precise microsurgery of C. elegans neurons

    摘要: Laser microsurgery is a powerful tool for neurobiology, used to ablate cells and sever neurites in-vivo. We compare a relatively new laser source to two well-established designs. Rare-earth-doped mode-locked fibre lasers that produce high power pulses recently gained popularity for industrial uses. Such systems are manufactured to high standards of robustness and low maintenance requirements typical of solid-state lasers. We demonstrate that an Ytterbium-doped fibre femtosecond laser is comparable in precision to a Ti:Sapphire femtosecond laser (1–2 micrometres), but with added operational reliability. Due to the lower pulse energy required to ablate, it is more precise than a solid-state nanosecond laser. Due to reduced scattering of near infrared light, it can lesion deeper (more than 100 micrometres) in tissue. These advantages are not specific to the model system ablated for our demonstration, namely neurites in the nematode C. elegans, but are applicable to other systems and transparent tissue where a precise micron-resolution dissection is required.

    关键词: Ytterbium-doped fibre femtosecond laser,Laser microsurgery,neuronal regeneration,Ti:Sapphire femtosecond laser,solid-state nanosecond laser,C. elegans

    更新于2025-09-23 15:19:57

  • The Study on Tuning Photoluminescence of Colloidal Graphene Quantum Dots Synthesized through Laser Ablation

    摘要: We report photoluminescence study of Colloidal Graphene Quantum Dots (GQDs) that synthesized from ablation of rGO solution. The rGO solution was ablated using 800 nm Ti-Sapphire femtosecond laser by varying the synthesize parameters such as laser power and ablation time. We observed that changing laser power 1 Watt to become 1.7 Watt and time ablation 20 minutes to become 60 minutes will alterate the Photoluminescence (PL) curve peak of GQDs. In case of ablation power variation, PL data shows that the PL curve peak excited by 280 nm laser changed from 369.09 nm to 371.02 nm, and when it excited by 290 nm the PL curve peak slightly changed from 388.17 nm to 393.8 nm. The alteration of Photoluminescence peak is also observed in the variation of time ablation experiment, The PL curve peaks from GQDs time ablation variation samples excited by 280 nm were slightly changed from 376.81 nm to 373.59 nm, and when it excited by 290 nm laser, the PL curve peak is 391.55 nm then changed to 392.11. The change of PL peak on laser power or time ablation variation shows that both parameters will alter either the size, shape, or the edge-type of GQDs.

    关键词: Laser Ablation,Ti-Sapphire Femtosecond Laser,Graphene Quantum Dots,Photoluminescence,Reduced Graphene Oxide

    更新于2025-09-16 10:30:52