- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- Dye-sensitized solar cell
- Photoelectrode
- Light scattering layer
- Transmittance
- White pigment (R902+)
- Rutile titanium dioxide
- Optoelectronic Information Materials and Devices
- Tribhuvan University
-
Chromium segregation in Cr-doped TiO2 (rutile): impact of oxygen activity
摘要: This work considers the effect of chromium surface segregation for polycrystalline Cr-doped TiO2 on surface vs. bulk defect disorder. It is shown that annealing of Cr-doped TiO2 (0.04 at% Cr) in the gas phase of variable oxygen activity at 1273 K results in a gradual transition in the valence of chromium at the surface from predominantly Cr3+ species in reduced conditions, p(O2) = 10?12 Pa, to comparable concentrations of both Cr3+ and Cr6+ species in oxidising conditions, p(O2) = 105 Pa. The reported data is considered in terms of defect equilibria leading to the formation of positively and negatively charged chromium in both the cation sub-lattice and interstitial sites. The derived theoretical models represent the effect of oxygen activity on the surface charge and the resulting electric field leading to migration mechanism of charged chromium species.
关键词: Oxygen activity,XPS,Cr-doped TiO2,Segregation,Titanium dioxide
更新于2025-09-23 15:22:29
-
Photocatalytic hydrogen evolution assisted by aqueous (waste)biomass under simulated solar light: Oxidized g-C3N4 vs. P25 titanium dioxide
摘要: Oxidized graphitic carbon nitride (o-g-C3N4) and Evonik AEROXIDE? P25 TiO2 were compared for lab-scale photocatalytic H2 evolution from aqueous sacrificial biomass-derivatives, under simulated solar light. Experiments in aqueous starch using Pt or Cu–Ni as the co-catalysts indicated that H2 production is affected by co-catalyst type and loading, with the greatest hydrogen evolution rates (HER) up to 453 and 806 μmol g?1 h?1 using TiO2 coupled with 3 wt% Cu–Ni or 0.5 wt% Pt, respectively. Despite the lower surface area, o-g-C3N4 gave HERs up to 168 and 593 μmol g?1 h?1 coupled with 3 wt% Cu–Ni or 3 wt% Pt. From mono- and di-saccharide solutions, H2 evolution was in the range 504–1170 μmol g?1 h?1 for Pt/TiO2 and 339–912 μmol g?1 h?1 for Cu–Ni/TiO2, respectively; o-g-C3N4 was efficient as well, providing HERs of 90–610 μmol g?1 h?1. The semiconductors were tested in sugar-rich wastewaters obtaining HERs up to 286 μmol g?1 h?1. Although HERs were lower compared to Pt/TiO2, a cheap, eco-friendly and non-nanometric catalyst such as o-g-C3N4, coupled to non-noble metals, provided a more sustainable H2 evolution.
关键词: Biomass,Graphitic carbon nitride,Hydrogen,Photocatalysis,Solar light,Titanium dioxide
更新于2025-09-23 15:22:29
-
Enhanced photocatalytic activity of hierarchical titanium dioxide microspheres with combining carbon nanotubes as “e-bridge”
摘要: Enhancing photocatalytic activity of titanium dioxide (TiO2) by efficient charge separation is essential but challenging. Herein, the recombination between photo-generated e–-h+ pairs is effectively hindered owing to the “e-bridge” formed between hierarchical TiO2 microspheres and carbon nanotubes (CNTs). The as-prepared three-dimensional TiO2 microspheres covered by intercrossing lamellar crystals are abundant in pores and sharp edges, forming an ideal interface with large surface area and numerous active sites for photocatalysis. Combined with CNTs, the TiO2 microspheres are connected and stabilized. Moreover, the CNTs serve as pathways for electrons, benefiting the effective separation of e–-h+ pairs and accounting for the superior photocatalytic activity. Transient fluorescence spectra shows that the lifetime of electrons on TiO2 prolongs from 5.23 ns to 10.14 ns assisted by CNTs. In aqueous matrix, electrons gathering on the CNTs can react with O2 to produce O2–, and simultaneously, plenty of holes left in TiO2 host generate OH by oxidizing adsorbed H2O, producing abundant active species for photocatalytic degradation of 4-nitrophenol. The highest degradation efficiency in removing organic contaminants is achieved on TiO2@CNTs hybridized with CNTs weight ratio being 5%.
关键词: e-Bridge,Titanium dioxide,Carbon nanotubes,Organic pollutant,Photocatalytic degradation
更新于2025-09-23 15:22:29
-
Antimicrobial efficacy of photodynamic therapy on dental implant surfaces: A systematic review of in vitro studies
摘要: Background: To systematically review the literature regarding the antimicrobial effects of photodynamic therapy (PDT) on the multi-bacterial species and the possible surface alterations of the dental implants as a result of PDT. Methods: The addressed focused question was: “Does PDT show antimicrobial efficacy against multi-bacterial species colonization and result in surface alteration on dental implants?” Electronic databases including MEDLINE and EMBASE up to and including December 2018 were searched. Results: Seven studies were included. Two studies used a total of 110 titanium dental implants, while 1 study included a total of 72 zirconia dental implants. Three studies investigated the antimicrobial PDT effects on titanium discs, while 1 study used titanium plates with germanium prisms. All in-vitro studies used diode laser. Energy fluence was reported only in 2 studies. Power output and density were 100 milliwatts (mW) and 150 mW cm-2, respectively. All in-vitro studies reported the multibacterial species outcomes after the application of antimicrobial PDT. All studies showed a significant reduction in the bacterial load. Only two studies reported the outcomes of microstructural changes on the titanium surface, in which both studies did not report any significant alterations on the titanium implants or discs with the application of PDT. Conclusion: This systematic review demonstrated significant reduction in the bacterial load but inconclusive findings regarding structural alterations on the titanium surface with the use of PDT. The results of this review should be considered preliminary and further in-vitro studies with standardized laser parameters are needed to obtain strong conclusions.
关键词: systematic review,titanium surface,dental implants,photodynamic therapy,bacterial load
更新于2025-09-23 15:22:29
-
Synthesis and characterization of nickel free titanium–hydroxyapatite composite coating over Nitinol surface through in-situ laser cladding and alloying
摘要: In this study, a high power fibre laser was used to synthesize titanium hydroxyapatite composite coating over biomedical-grade Nitinol surface through laser in-situ formation, cladding and alloying processes. The laser fluence is varied in the range of 2 kJ/cm2 to 8 kJ/cm2 in view of establishing a relationship between various in-situ phase-formation characteristics along with the rate of diffusion of the base material in the cladding zone with molten pool temperature. The alloying with base Nitinol material and subsequent diffusion of titanium to the in-situ formed calcium phosphate cladding layer are observed in the samples treated with laser fluence of 4 kJ/cm2 or above. Double layer configuration of the solidified molten pool is mostly found in all the cladding samples. At the fluence of 6 kJ/cm2 or above, the top layer primarily comprises segregated titanium-hydroxyapatite phase along with diffusion of titanium from the base material. Whereas, the bottom part of the molten pool is dominated with titanium-rich nickel–titanium intermetallic reinforced with nano particles. The steady-state variations of calcium and elemental presence of titanium through the cladding cross-section along with no nickel or oxide presence are confirmed through EDS line scans. The spherical and lamellar structures of formation of titanium-hydroxyapatite on the top surface also help to improve the overall corrosion resistance properties as compared to the bare surface. The modulus of elasticity is controlled by the variation of the top layer and intermediate layer composition and thickness, which varies with laser fluence. It falls in the range of 6–30 GPa which is similar to natural bone. Thus this nickel-free alloying and cladding layer of titanium-hydroxyapatite can serve as one of the potential candidates for use as a coating over the load bearing Nitinol implants to arrest the nickel release phenomena.
关键词: Titanium–calcium coating,Biocompatible functional coating,Hydroxyapatite,Nitinol surface modification,Laser cladding and alloying
更新于2025-09-23 15:22:29
-
The photocatalytic degradation kinetics of gaseous formaldehyde flow using TiO2 nanowires
摘要: A high performance TiO2 nanowires photocatalyst was successfully prepared by a hydrothermal method to decompose gaseous formaldehyde into CO2 and H2O in a homemade tube reactor without secondary pollution under UV irradiation. The photocatalytic oxidization (PCO) kinetics fit well with the traditional Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. Multiple parameters including formaldehyde concentration, flow rate, and light intensity were monitored online and proved to be key factors affecting the rate in the photocatalytic reactions. The crystallinity of photocatalyst and its surface reactive site density determined the adsorption equilibrium constant (KHCHO) of formaldehyde on TiO2. The experimental results show that the degradation kinetics of mobile gas-phase formaldehyde by TiO2 nanowires did not strictly conform to the first-order reaction kinetics, and its photocatalytic degradation rate increases with the increase of ultraviolet LED irradiation intensity. It takes only 8.6 minutes to completely degradate formaldehyde at a flow rate of 50 ml/min by 50 mg 700TiO2, and the reaction performance remains unchanged during the decomposing process of 1200 minutes.
关键词: reaction kinetics,formaldehyde,Titanium oxide nanowires,photocatalyst,photocatalytic oxidization
更新于2025-09-23 15:22:29
-
Performance of various commercial TiO <sub/>2</sub> in photocatalytic degradation of a mixture of indoor air pollutants: Effect of photocatalyst and operating parameters
摘要: Photocatalytic oxidation (PCO) air cleaners can be installed in air handling units to reduce occupants’ exposure to hazardous gases, boost indoor air quality, and concomitantly lower HVAC energy consumption by lowering the required ventilation rate. In this work, photocatalytic activity of four commercialized titanium dioxide photocatalysts (P25, PC500, UV100, and S5-300A) for treating a mixture of seven prevalent volatile organic compounds (VOCs) were assessed in a continuous flow reactor. The impacts of major experimental factors namely concentration (15-100 ppb), relative humidity level (0-60% at 23?C), and residence time (0.012-0.05 s) on the removal efficiency and by-products generation were examined. Photocatalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). UV100 possessed the highest values for total VOC removal efficiency, which could be attributed to its large surface area, high porosity, good crystallinity, and large population of surface hydroxyls. Regarding relative humidity, two dominant trends were found: i) increasing the humidity resulted in lower removal efficiencies, or ii) existence of an optimum humidity level in some cases. The treatment efficiency followed the order: alcohols > ketones > aromatics > alkanes. The main by-products in the gas phase were formaldehyde, acetaldehyde, acetone, and propionaldehyde.
关键词: titanium dioxide,volatile organic compounds,indoor air quality,photocatalytic oxidation,relative humidity,residence time,by-products
更新于2025-09-23 15:22:29
-
Synthesis, characterization of TiO <sub/>2</sub> nano particles for enhancement of electron transport application in DSSC with Cu-BPCA Dye
摘要: Dye-sensitized solar cells [DSSCs] have attracted extensive attention due to their potential low cost and high energy efficiency, rendering them one of the most promising system for solar-to-energy conversion. The DSSC efficiency was enhanced by intermixing with the use of TiO2 nanoparticles which provides high surface area for accommodating the light-absorbing sensitizer and also the stable conductor for photo generated electrons. In hydrothermal method, the TiO2 nanoparticles synthesis depends on temperature. TiO2 nano particles diameter depends on different autoclaving temperature.TiO2 nanoparticles have been coated on ITO glasses by screen printing method. In this work, we have synthesized TiO2 nano particles which can provide a fast way for electron transport and reduced trapping of photo injected electrons during the path of back contact. The DSSCs were fabricated using the ruthenium dye and electrolyte (I3/I3-). The crystalline structure of TiO2 has been characterized by DLS, X-ray diffraction, SEM and TEM. The absorption spectra measured by using UV-Vis spectrometer. The IR spectrum has been recorded to know the peaks of Ti-O-Ti in powder sample. It has been found that the efficiency of DSSC was highly affected by the properties of nano particles.
关键词: Nanoparticles,Dye,DSSC,Titanium Dioxide (TiO2)
更新于2025-09-23 15:22:29
-
Enhanced Photocatalytic Degradation of Methylene Blue by Using Au-TiO<sub>2</sub>
摘要: In this work, Au-TiO2 nanoparticles (NPs) were synthesized in a single step by flame spray pyrolysis (FSP) method. X-ray diffraction (XRD) results indicated that phase structures of all samples TiO2 were the mixture of anatase and rutile phases. High resolution transmission electron microscopy (HRTEM) showed that dark spots of Au NPs deposited on larger TiO2 nanoparticles. HRTEM results indicated TiO2 NPs were average crystallite size in the range of 10–30 nm whereas the average diameter of Au NPs was about 5–10 nm. UV–Vis absorption spectroscopy technique showed peaks attributable of surface plasmon resonance (SPR) to Au NPs loaded on TiO2 in the wavelength of 500–630 nm. The Au-TiO2 NPs showed excellent photocatalytic activity for the degradation of methylene blue (MB) under UV-Vis irradiation. It was found that 0.25 mol% Au-TiO2 which was a better photocatalyst than others under the same reaction conditions. The results showed that Au NPs-loading could effectively improve the photocatalytic activities of TiO2.
关键词: Titanium Dioxide,Photocatalytic,Degradation,Gold,Methylene Blue
更新于2025-09-23 15:22:29
-
Enhanced Photocatalytic Activity of Titania by Co-Doping with Mo and W
摘要: Various W and Mo co-doped titanium dioxide (TiO2) materials were obtained through the EISA (Evaporation-Induced Self-Assembly) method and then tested as photocatalysts in the degradation of 4-chlorophenol. The synthesized materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy (RS), N2 physisorption, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results showed that the W-Mo-TiO2 catalysts have a high surface area of about 191 m2/g, and the presence of an anatase crystalline phase. The co-doped materials exhibited smaller crystallite sizes than those with one dopant, since the crystallinity is inhibited by the presence of both species. In addition, tungsten and molybdenum dopants are distributed and are incorporated into the anatase structure of TiO2, due to changes in red parameters and lattice expansion. Under our experimental conditions, the co-doped TiO2 catalyst presented 46% more 4-chlorophenol degradation than Degussa P25. The incorporation of two dopant cations in titania improved its photocatalytic performance, which was attributed to a cooperative effect by decreasing the recombination of photogenerated charges, high radiation absorption capacity, high surface areas, and low crystallinity. When TiO2 is co-doped with the same amount of both cations (1 wt.%), the highest degradation and mineralization (97% and 74%, respectively) is achieved. Quinones were the main intermediates in the 4-chlorophenol oxidation by W-Mo-TiO2 and 1,2,4-benzenetriol was incompletely degraded.
关键词: W-Mo dopants,photocatalytic activity,nanoparticles,titanium dioxide
更新于2025-09-23 15:22:29