修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

37 条数据
?? 中文(中国)
  • Modulating Protein-Protein Interactions with Visible-Light Responsive Peptide Backbone Photoswitches

    摘要: Life relies on a myriad of carefully orchestrated processes, in which proteins and their direct interplay ultimately determine cellular function and disease. Modulation of these complex cross-talks has recently attracted attention, even as a novel therapeutic strategy. Here, we describe the synthesis and characterization of two visible-light responsive peptide backbone photoswitches based on azobenzene derivatives to exert optical control over protein-protein interactions (PPI). Our novel peptidomimetics undergo fast isomerization and reversibility with low photochemical fatigue under alternatively blue/green-light irradiation cycles. Both bind in the nanomolar rage to the protein of interest. Importantly, our best peptidomimetic displays a clear difference between isomers in its protein-binding capacity and, in turn, in its potential to inhibit enzymatic activity via PPI disruption. In addition, crystal structure determination, docking and MD calculations give a molecular interpretation and open new avenues in the design and synthesis of future photoswitchable PPI modulators.

    关键词: protein-protein interactions,photopharmacology,visible-light irradiation,azobenzene,photoswitches

    更新于2025-11-21 11:20:42

  • Effect of conduction band potential on cocatalyst-free plasmonic H <sub/>2</sub> evolution over Au loaded on Sr <sup>2+</sup> -doped CeO <sub/>2</sub>

    摘要: There is little information on the effect of the conduction band (CB) position on plasmonic hydrogen (H2) formation under visible light irradiation over gold (Au) nanoparticles supported on semiconductors because there were no appropriate materials for which the CB position gradually changes. In this study, we analyzed the flatband potential of strontium ion (Sr2+)-doped cerium(IV) oxide (CeO2:Sr) and found that the CB position gradually shifted negatively from +0.031 V to ?1.49 V vs. NHE with an increase in the Sr2+ mole fraction. Plasmonic photocatalysts consisting of Au nanoparticles, CeO2:Sr and a platinum (Pt) cocatalyst were prepared and characterized by using X-ray diffraction, UV-vis spectroscopy, and transmission electron spectroscopy. Photocatalytic reaction under visible light irradiation revealed that H2 was produced over Au nanoparticles supported on CeO2:Sr having the CB potential of ?0.61 V vs. NHE and that the negative limit of the CB position for electron injection from Au nanoparticles existed between ?0.61 V and ?1.49 V vs. NHE. We found that Au/CeO2:Sr plasmonic photocatalysts also produced H2 without the aid of a Pt cocatalyst due to the sufficiently negative potential of electrons injected into the CB of CeO2:Sr.

    关键词: hydrogen evolution,visible light irradiation,gold nanoparticles,plasmonic photocatalysts,strontium-doped cerium oxide

    更新于2025-11-19 16:51:07

  • Visible-light-triggered generation of persistent radical anions from perylenediimides: A substituent effect and potential application in photocatalytic reduction of Ag+

    摘要: Three perylenediimide derivatives were reduced to their persistent radical anions in N-methyl-2-pyrrolidone (NMP) under ambient conditions by a visible light photoinduced electron transfer (PET). UV?vis and electron paramagnetic resonance (EPR) measurements were carried out to confirm the formation of radicals. The relationships between molecular structure, electrochemical property, phototransformation kinetics, and air stability of radical anions were investigated by the introduction of pyrimidine rings at the core position and fluoroalkylation substituents at the imide position. This study reveals that the electron-deficient pyrimidine rings and electron-withdrawing fluoroalkylation substituents can effectively enhance the phototransformation rate and the radical stability at ambient conditions. The effects of solvents and illuminance levels on the photoinduced reduction of perylenediimides were also studied. A photocatalytic reduction of Ag+ was successfully carried out using the perylenediimide with pyrimidine and fluoroalkylation substituents as catalyst upon irradiation with visible light.

    关键词: Photocatalytic reduction,Perylene diimide derivative,Silver ion,Persistent radical anion,Visible light irradiation

    更新于2025-11-14 17:03:37

  • Construction of Pt-decorated g-C3N4/Bi2WO6 Z-scheme composite with superior solar photocatalytic activity toward rhodamine B degradation

    摘要: Highly efficient visible-light-driven Pt-decorated g-C3N4/Bi2WO6 hybrid photocatalysts were successfully prepared via a photodeposition method. The microstructures and optical properties of the prepared samples were characterized by transient photocurrent experiments, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV-vis diffused reflectance spectra (DRS), photoluminescence (PL), electron spin resonance (ESR) spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques. FESEM and TEM images show that metallic Pt particles disperse on the surface of g-C3N4/Bi2WO6 hybrid. Pt-decorated g-C3N4/Bi2WO6 compsites exhibited excellent DRS attribute to the surface plasmonic resonance (SPR) of Pt particles and g-C3N4/Bi2WO6. The PL results verified that the suitable band potential of g-C3N4 and Bi2WO6 for construction of Z-type photocatalytic system. In the photocatalytic experiment, results showed that Pt(1%)-g-C3N4/Bi2WO6 photocatalysts displayed higher photocatalytic activity than either pure g-C3N4 or Bi2WO6 for the degradation of Rhodamine B (RhB). Additionally, the free-radical trapping experiments and ESR disclose that the hole (h+), superoxide radical (·O2-) and hydroxyl radical (·OH) acted as reactive species. Based on above, a possible plasmonic Z-scheme mechanism for organics degradation over Pt-decorated g-C3N4/Bi2WO6 was proposed.

    关键词: g-C3N4/Bi2WO6,Visible light irradiation,Z-scheme heterojunction,Pt-decorated

    更新于2025-09-23 15:23:52

  • BiF3 octahedrons: A potential natural solar light active photocatalyst for the degradation of Rhodamine B dye in aqueous phase

    摘要: Herein, we report the successful synthesis of BiF3 octahedrons via facile hydrothermal process as potential solar light active catalyst for the photocatalytic degradation of Rhodamine B (RhB) dye in aqueous phase. The synthesized BiF3 octahedrons were characterized by several techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV-diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) techniques in order to observe the structural, morphological, optical and luminescence properties. The synthesized octahedrons possess the high density growth, pure and well-crystalline with cubic phase structure and band gap of 3.98 eV. As a potential solar light active photocatalyst, the synthesized BiF3 octahedrons exhibited ~95.7% degradation of RhB in 50 min. The effect of different process parameters such as pH and catalyst dose on the degradation of RhB was also explored. Interestingly, the synthesized BiF3 octahedrons demonstrated better photocatalytic performance compared to several commercially available photocatalysts such as TiO2 (PC-500), SnO2 and ZnS. Further, it was observed that the degradation of RhB over the prepared BiF3 octahedrons obeyed the pseudo first-order reaction kinetics with rate constant of 0.06393 min-1. The scavenger experiments verified the role of h+, e─, O2 .─, ?OH and ?OHs in the photocatalytic degradation process and a plausible photocatalytic mechanism has also been proposed.

    关键词: Rhodamine B,Photocatalysis,Solar-light irradiation,BiF3 octahedrons

    更新于2025-09-23 15:23:52

  • Microwave Hydrothermal Synthesis of In <sub/>2</sub> O <sub/>3</sub> -ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties

    摘要: Indium oxide (In2O3) doped zinc oxide (ZnO) nanocomposites were successfully synthesized through a facile microwave hydrothermal method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms (BET) and UV-Vis diffuse reflectance spectroscopy. The morphology of In2O3-ZnO composites was observed to be like flowers, and the diameter of particles constituting the porous petal was about 30 nm. The photoelectrocatalytic test results showed that the photoelectrocatalytic methylene blue (MB) degradation efficiency using In2O3-ZnO nanocomposites as photocatalysts under visible light irradiation and a certain voltage could reached above 95.3% after 60 min, much higher than that of In2O3 particles and ZnO particles. The enhanced photoelectrocatalytic activity was attributed to the doping of In2O3 and applied voltage, which beneficially reduced the recombination of electrons and holes in the photoelectrocatalytic process, therefore, it promoted the production of active species (?OH and ?O2-).

    关键词: photoelectrochemical properties,visible light irradiation,methylene blue degradation,In2O3-ZnO nanocomposites,microwave hydrothermal synthesis

    更新于2025-09-23 15:22:29

  • Prussian blue-encapsulated Fe3O4 nanoparticles for reusable photothermal sterilization of water

    摘要: Waterborne health issues continue to grow despite the large number of available solutions. Current sterilization techniques to fight with waterborne diseases struggle to meet the demands on cost, efficiency and reach. Effective alternatives are pressingly required. Here we introduce Prussian blue coated ferroferric oxide (Fe3O4@PB) composites for water sterilization. The composites exhibit superior photothermal inactivation of bacteria under solar-light irradiation, with nearly complete inactivation of bacterial cells in only 15 min. Even for the mixed bacteria in authentic water matrices, the composites show excellent bacterial inactivation performance. Moreover, the highly magnetized iron core of the Fe3O4@PB enables magnetic separation and recycling. Multiple cycle runs reveal that Fe3O4@PB composites have exceptional stability and reusability. This work demonstrates a scalable, low-cost, high-efficiency and reusable sterilization method to improve water quality and safety.

    关键词: Solar-light irradiation,Prussian blue,Recyclability,Water security,Photothermal sterilization

    更新于2025-09-23 15:22:29

  • 3D graphene aerogels/Sb2WO6 hybrid with enhanced photocatalytic activity under UV- and visible-light irradiation

    摘要: A novel ultraviolet (UV)- and visible-light-active 3D graphene aerogels (3DGA)/Sb2WO6 hybrid photocatalyst was prepared by electrostatic self-assembly (ESSA) method. The photocatalytic activity of the 3DGA/Sb2WO6 hybrid was studied by monitoring the change in the concentration of methyl orange (MO) under UV-light and visible-light irradiation. The results demonstrated that the as-prepared hybrid exhibited significantly enhanced efficiency for the photodegradation of MO in comparison with pure Sb2WO6. This was ascribed to the efficient separation of the photogenerated electrons (e–) and holes (h+) with the aid of 3DGA as well as the generated reactive superoxide radical anions (O2(cid:129)–). Moreover, the 3DGA/Sb2WO6 hybrid exhibited high recyclability, because the highly hydrophobic 3DGA in the hybrid was very advantageous to the separation of the hybrid photocatalyst from the MO solutions.

    关键词: 3D graphene aerogels,Sb2WO6,Electrostatic self-assembly,Hybrid photocatalyst,Visible-light irradiation

    更新于2025-09-23 15:21:21

  • Light-Triggered Reversible Self-Engulfing of Janus Nanoparticles

    摘要: Block copolymers containing azobenzene liquid crystalline (LC) mesogen are used to prepare snowman-like Janus nanoparticles (NPs) by emulsion solvent evaporation. The azobenzene-containing poly(methacrylate) (PMAAz) head of the Janus NPs is in the smectic LC phase with ordered stripes, which becomes amorphous and enlarged due to trans/cis transformation under UV irradiation. The expanded PMAAz can consequently engulf the other head. The self-engulfed NPs can recover to their original state in both shape and LC state via visible-light irradiation. This strategy is promising for programmable load and release of different payloads by remote trigger using light.

    关键词: emulsion solvent evaporation,azobenzene,liquid crystalline,Block copolymers,Janus nanoparticles,programmable load and release,UV irradiation,visible-light irradiation

    更新于2025-09-23 15:21:01

  • Defect engineered mesoporous 2D graphitic carbon nitride nanosheet photocatalyst for Rhodamine B degradation under LED light illumination

    摘要: In this work, a nitrogen vacancy induced 2D mesoporous graphitic carbon nitrogen (g-C3N4) nanosheet photocatalyst was successfully synthesized through a simple two step thermal treatment method. The morphology of the nanosheet photocatalyst and the presence of nitrogen vacancy was explored through a wide range of characterization techniques. The as prepared photocatalyst possess an improved visible light absorption efficiency as confirmed from the UV-Visible diffuse reflectance spectroscopy (DRS). Moreover, the improved charge carrier separation efficiency of the nitrogen vacant material was demonstrated from the photoluminescence spectrum. Most importantly, the photocatalyst exhibited an excellent photodegradation efficiency towards rhodamine B (RhB) dye under the illumination of an 18 W LED light. The vacancy induced nanosheets demonstrated a degradation co-efficient of 0.074 min-1 in RhB degradation, which is 9.25 fold higher than that of the bulk g-C3N4. The nanosheets further exhibited an enhanced degradation efficiency toward tetracycline antibiotic. Furthermore, the photocatalyst displayed an outstanding stability even after 5 cycles. A plausible photocatalytic mechanism has also been explained based on the results obtained from the radical scavenging experiments. This study would provide insight into the defect induction mechanism into the 2D g-C3N4 nanosheet and expected to help in rationally designing vacancy induced materials with cost effective application in various environmental fields.

    关键词: nitrogen vacancy,LED light irradiation,rhodamine B,mesoporous,2D g-C3N4 nanosheet

    更新于2025-09-23 15:21:01