修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • [NanoScience and Technology] Silicene (Prediction, Synthesis, Application) || Optical Properties of Silicene and Related Materials from First Principles

    摘要: Slightly buckled, graphene-like honeycomb crystals made by silicon, silicene, or by other group-IV elements such as germanene and stanene represent atomically thin films, i.e., two-dimensional (2D) systems. The theoretical description of their optical properties suffers from three difficulties, (i) a thickness much smaller than the wavelength of light, (ii) their common modeling by superlattice arrangements with sufficiently large layer distances, and (iii) the inclusion of many-body effects. Here, the solutions of all problems are discussed. (i) The optical response of an individual honeycomb crystal is described by a tensor of 2D optical conductivities or dielectric functions, which are related to the optical response of the corresponding superlattice. (ii) The influence of such a sheet crystal on the transmittance, reflectance and absorbance of a layer system is described. (iii) Excitonic and quasiparticle effects are demonstrated to widely cancel each other. Silicene sheets are investigated in detail. As a consequence of the linear bands and Dirac cones the low-frequency absorbance is defined by the Sommerfeld finestructure constant. Van Hove singularities represented by critical points in the interband structure are identified at higher photon energies. Clear chemical trends along the row C → Si → Ge → Sn are derived. The influence of multiple layers is studied for the cases of bilayer silicene and graphene.

    关键词: silicene,optical properties,many-body effects,two-dimensional materials,first principles,Van Hove singularities,stanene,Dirac cones,germanene

    更新于2025-09-23 15:21:21

  • Broadening of van Hove Singularities Measured by Photoemission Spectroscopy of Single and Mixed Chirality Single-Walled Carbon Nanotubes

    摘要: The occupied valence electronic states of single walled carbon nanotubes (SWCNTs) are responsible for their optoelectronic properties and are unique for each SWCNT chirality. Photoemission spectroscopy (PES) is one of the few methods capable of directly measuring the electron density in the valence states of materials but there are only few reports which have observed the valence states of SWCNTs and no examples for single-chirality SWCNTs. Here we prepare single and mixed chirality SWCNT films and characterise their valence states using PES. Chirality pure SWCNTs were isolated using both gel permeation chromatography and ssDNA facilitated aqueous two phase extraction from starting materials consisting of mixed chirality species. Chirality separation and purity was confirmed with UV-Vis-nIR absorption spectroscopy. SWCNT films were prepared for the single chirality species (10,3), (7,6), (7,3), (6,5), (8,3), (9,1) along with SWCNT chirality mixture of metallic and semiconducting SWCNTs, and as-synthesised mixtures possessing a range of SWCNT diameter. PES using synchrotron radiation was completed for all samples with survey and C 1s core level spectra obtained to confirm SWCNT coverage, defect level and purity. Valence band PES was obtained to characterise the valence electronic states and showed significant broadening of the signal, in comparison to calculated density of states, which could not be accounted for by instrument resolution. An inverse diameter dependence of the broadening was observed with greater broadening for smaller diameter SWCNTs. The broadening is hypothesised to be related to the photohole lifetime which was found to be significantly longer for wide diameter SWCNTs. The diameter dependence of the broadening and photohole lifetimes is discussed in terms of both Tomonaga-Luttinger and Landau theory of Fermi liquids.

    关键词: chirality,valence electronic states,single-walled carbon nanotubes,van Hove singularities,photoemission spectroscopy

    更新于2025-09-16 10:30:52