- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Pulsed light for a cleaner dyeing industry: Azo dye degradation by an advanced oxidation process driven by pulsed light
摘要: Water pollution by wastewater containing dyes is an environmental issue that can be mitigated by the use of advanced oxidation processes (AOP). Pulsed light (PL) is an emerging food processing technology that uses eco-friendly lamps and can potentially be adapted as light source of an UV-based AOP. In the present work, a PL/H2O2 process was tested for the decolourization of two azo dyes, and a pulsed light/H2O2/ferrioxalate process was tested for the decolourization of one azo dye. The efficiency of the PL/H2O2 process in a batch reactor under different parametric values: dye concentration, pH, H2O2 and salt doses was followed by spectrophotometry and fitted to first-order kinetics; and several degradation products were detected. In the PL/H2O2 process, decolourization rates increased at low dye concentrations and high H2O2 doses, were pH-dependent and were inhibited by the addition of NaCl, Na2SO3 or Na2CO3. More than 50 % decolouration was achieved with the PL/H2O2 process for both dyes after applying 54 J/cm2 (25 light pulses). The PL/H2O2/ferrioxalate process achieved > 95 % decolouration for Methyl orange when applying 21 J/cm2 (10 pulses); that level of energy can be supplied by PL commercial systems in nine and four seconds respectively. No known toxic degradation products were detected. Results show that a PL/H2O2 process has potential to be used for the efficient degradation of dyes from wastewater. Furthermore, the efficacy of this process can be improved by the use of ferrioxalate. PL technology could become an alternative light source to contribute to decrease the environmental impact of wastewater produced by the dyeing industry.
关键词: pulsed light,ferrioxalate,advanced oxidation process,azo dye,wastewater remediation
更新于2025-09-19 17:15:36
-
Design of graphitic carbon nitride supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic properties
摘要: A novel ternary photocatalytic nanocomposite, Ag–Cu2O/C3N4, has been successfully synthesized via a facile two-step reduction procedure at room temperature, wherein Ag nanoparticles are directly growing on the surface of Cu2O supported by C3N4 nanosheets. The resulting ternary Ag–Cu2O/C3N4 photocatalyst exhibits enhanced photocatalytic activity towards methyl orange (MO) degradation compared with its conterparts (Cu2O, spherical Ag–Cu2O and Cu2O/C3N4), demonstrating a removal rate of MO up to 95.7% within 30 min. The enhanced photocatalytic activity can be ascribed to the following factors: 1) the surface plasmon resonance effect of Ag nanoparticles broadening the visible light response of Cu2O; 2) the introduction of C3N4 functioning not only as a fast electron delivery but also a fine stabilizer to prevent the Ag–Cu2O composite from agglomeration. Mechanism studies reveal that MO is cracked into smaller fragments and the h+ is the main reactive species participating in the photocatalytic process. Moreover, the Ag–Cu2O/C3N4 photocatalyst also shows high photodegradation ability for another two representative azo dyes, acid orange II and congo red. This study demonstrates the potential of Ag–Cu2O/C3N4 in the degradation of azo dyes and also provides a guide to design of Cu2O-based ternary photocatalysts for further wastewater remediation.
关键词: Wastewater remediation,Cuprous oxide,Photocatalysis,C3N4 nanosheets,Fragments,Mechanism
更新于2025-09-09 09:28:46