修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • [Laser Institute of America ICALEO?? 2016: 35th International Congress on Applications of Lasers & Electro-Optics - San Diego, California, USA (October 16a??20, 2016)] International Congress on Applications of Lasers & Electro-Optics - Investigation of ablation characteristics for microrobotic materials using laser machining

    摘要: Microrobotic devices have been widely investigated as promising alternatives to conventional biomedical technologies. By utilizing magnetic materials, microrobotic devices can be wirelessly manipulated by external magnetic fields without the use of additional power transfer units or batteries. Thus, the overall structures of the microrobotic devices can be effectively minimized to be applied for the human body. To manipulate the devices, various methods such as a magnetic force-based pulling method, cilia-like beating method, and helical propulsion method have been proposed. Conventional helical microrobotic devices have generally been manufactured by using three-dimensional (3D) printing technologies. These technologies are useful when manufacturing spatially complex structures such as the helical structures. However, due to the limitations of the extrusion and lamination processes, microrobotic devices can be constructed with low degree of precision and can have poor surface roughness under the 3D printing technologies. This may cause undesirable damages to the human body tissues. Furthermore, 3D printing requires long processing time due to post-processing to remove unwanted body parts. To improve surface quality and shorten processing time, this research uses laser machining technology. Before directly applying to fabricate helical microrobotic devices, laser ablation characteristics on Acrylonitrile Butadiene Styrene (ABS), which is a common material used for 3D printing, are investigated.

    关键词: Acrylonitrile Butadiene Styrene (ABS),ablation characteristics,3D printing,laser machining,microrobotic devices

    更新于2025-09-23 15:21:01

  • Low-Power, Multimodal Laser Micromachining of Materials for Applications in sub-5 ?μm Shadow Masks and sub-10 ?μm Interdigitated Electrodes (IDEs) Fabrication

    摘要: Laser micromachining is a direct write microfabrication technology that has several advantages over traditional micro/nanofabrication techniques. In this paper, we present a comprehensive characterization of a QuikLaze 50ST2 multimodal laser micromachining tool by determining the ablation characteristics of six (6) different materials and demonstrating two applications. Both the thermodynamic theoretical and experimental ablation characteristics of stainless steel (SS) and aluminum are examined at 1064 nm, silicon and polydimethylsiloxane (PDMS) at 532 nm, and Kapton? and polyethylene terephthalate at 355 nm. We found that the experimental data aligned well with the theoretical analysis. Additionally, two applications of this multimodal laser micromachining technology are demonstrated: shadow masking down to approximately 1.5 μm feature sizes and interdigitated electrode (IDE) fabrication down to 7 μm electrode gap width.

    关键词: interdigitated electrodes,ablation characteristics,multimodal laser micromachining,shadow mask

    更新于2025-09-19 17:13:59

  • Femtosecond laser pulse ablation characteristics of polymer-derived SiAlCN ceramics

    摘要: Polymer-derived ceramics (PDCs) are promising high-performance materials for various applications, yet their brittleness represents major drawback in their machining. Femtosecond laser pulse ablation is non-contact rapid processing method used in precision machining of PDCs. Herein, two laser parameters (laser energy fluence and rotational speed) were investigated to achieve laser–material interactions and machining characteristics via machine single circular lines, blind holes, and through-holes in polymer-derived SiAlCN ceramics. With the decrease in rotational speed, the morphology of single circular lines gradually roughened and heat-affected zone was produced. Varying ablation rates were obtained at different energy fluences. For blind holes, three different ablation regions were observed. As the energy fluence increased, blind holes gradually transformed into through-holes. Through-holes with near-cylindrical profiles and minimal collateral damage were obtained. Ablation debris deposited around through-holes were indicative of N release, breaking of Si-N and C-C bonds, and formation of SiOx. Laser ablation of PDCs led to the formation of laser-induced surface structures, bubble pits, stripe structures, molten materials, and sphere-like particles.

    关键词: femtosecond laser pulse,ablation characteristics,polymer-derived ceramics,energy fluence

    更新于2025-09-12 10:27:22