- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Microstructural Characterization of Defects and Chemical Etching for HgCdSe/ZnTe/Si (211) Heterostructures
摘要: In this work, transmission electron microscopy has been used to investigate HgCdSe/ZnTe/Si (211) heterostructures grown by molecular beam epitaxy and to study the effects of chemical etchants for measurements of defect density in the HgCdSe epilayers. Both ZnTe/Si and HgCdSe/ZnTe interfaces were decorated with {111}-type stacking faults inclined at angles of ~19° or ~90° with respect to the interface plane. Similar stacking faults were also present in the upper regions of the HgCdSe films. High-resolution imaging and Fourier image analysis revealed dislocations, mostly with a Burgers vector, at both ZnTe/Si and HgCdSe/ZnTe interfaces. Etching solutions based on different combinations of nitric acid, hydrochloric acid and lactic acid were tried in attempts to identify an etchant that provided one-to-one correspondence between etch pits and defects in the HgCdSe layer. Focused-ion-beam milling and transmission electron microscopy were used to prepare site-specific cross-section samples from across the etch pits. However, many defects in regions surrounding the etch pits were unaffected by the various different etchants.
关键词: dislocations,etch pits,HgCdSe (211),alternative substrates,ZnTe
更新于2025-09-23 15:19:57