- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Reduced Graphene Oxide Membrane induced Robust Structural Colors towards Personal Thermal Management
摘要: Angle-independent structural colors are prepared by membrane separation-assisted assembly (MSAA) method with modified reduced graphene oxide (rGO) as the substrate membrane. We show that the wrinkled and crumpled rGO laminates not only ensure uneven morphology of colloidal film but improve color saturation by decreasing coherent scattering. In addition, we study the influence of stopband position on thermal insulation property of the colloidal film for the first time. High absolute temperature difference of 6.9 oC is achieved comparing with control sample. And films with longer stopband positions indicate better thermal insulation performance because of inherent slow photon effect in photonic structure. This general principle of thermal insulation by colloidal films opens the way to new generation of thermal management materials.
关键词: angle-independent,thermal management,human body cooling,graphene,structural color
更新于2025-09-10 09:29:36
-
Metallosupramolecular Photonic Elastomers with Self‐Healing Capability and Angle‐Independent Color
摘要: Photonic elastomers that can change colors like a chameleon have shown great promise in various applications. However, it still remains a challenge to produce artificial photonic elastomers with desired optical and mechanical properties. Here, the generation of metallosupramolecular polymer-based photonic elastomers with tunable mechanical strength, angle-independent structural color, and self-healing capability is reported. The photonic elastomers are prepared by incorporating isotropically arranged monodispersed SiO2 nanoparticles within a supramolecular elastomeric matrix based on metal coordination interaction between amino-terminated poly(dimethylsiloxane) and cerium trichloride. The photonic elastomers exhibit angle-independent structural colors, while Young’s modulus and elongation at break of the as-formed photonic elastomers reach 0.24 MPa and 150%, respectively. The superior elasticity of photonic elastomers enables their chameleon-skin-like mechanochromic capability. Moreover, the photonic elastomers are capable of healing scratches or cuts to ensure sustainable optical and mechanical properties, which is crucial to their applications in wearable devices, optical coating, and visualized force sensing.
关键词: elastomers,metallosupramolecular coordination,self-healing,photonic crystals,angle-independent
更新于2025-09-04 15:30:14