- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
NIR‐Laser‐Controlled Hydrogen‐Releasing PdH Nanohydride for Synergistic Hydrogen‐Photothermal Antibacterial and Wound‐Healing Therapies
摘要: For decades, hydrogen (H2) gas has been recognized as an excellent antioxidant molecule that holds promise in treating many diseases like Alzheimer’s, stroke, cancer, and so on. For the first time, active hydrogen is demonstrated to be highly efficient in antibacterial, antibiofilm, and wound-healing applications, in particular when used in combination with the photothermal effect. As a proof of concept, a biocompatible hydrogen-releasing PdH nanohydride, displaying on-demand controlled active hydrogen release property under near-infrared laser irradiation, is fabricated by incorporating H2 into Pd nanocubes. The obtained PdH nanohydride combines both merits of bioactive hydrogen and photothermal effect of Pd, exhibiting excellent in vitro and in vivo antibacterial activities due to its synergistic hydrogen-photothermal therapeutic effect. Interestingly, combinational hydrogen-photothermal treatment is also proved to be an excellent therapeutic methodology in healing rats’ wound with serious bacterial infection. Moreover, an in-depth antibacterial mechanism study reveals that two potential pathways are involved in the synergistic hydrogen-photothermal antibacterial effect. One is to upregulate bacterial metabolism relevant genes like dmpI, narJ, and nark, which subsequently encode more expression of oxidative metabolic enzymes to generate substantial reactive oxygen species to induce DNA damage and another is to cause severe bacterial membrane damage to release intracellular compounds like DNA.
关键词: wound healing,hydrogen releasing materials,synergistic hydrogen-photothermal therapy,antibacterial mechanism,antibacterial activity
更新于2025-09-11 14:15:04
-
Synthesis and characterization of CuZnO@GO nanocomposites and their enhanced antibacterial activity with visible light
摘要: Copper and zinc composite oxide (CuZnO) was synthesized successfully via a sol–gel method and modi?ed by silane coupling agent to prepare CuZnO@graphene oxide (CuZnO@GO) nanocomposites, with CuZnO nanoparticles (NPs) distributed on the GO nanosheets. The structural properties of prepared CuZnO@GO nanocomposites were studied by FT-IR and XRD techniques. SEM and TEM analysis showed the spherical morphology of CuZnO NPs with a diameter of 20–40 nm. The optical properties of synthesized products were estimated through UV–Vis DRS and PL spectroscopy, which suggested that CuZnO@GO nanocomposites had a widened absorption range from UV to visible region and a lower photogenerated carrier recombination rate than that of pure CuZnO NPs. The antibacterial mechanism of CuZnO@GO nanocomposites was investigated using gram-negative bacteria Escherichia coli and gram-positive bacteria Staphylococcus aureus as two model microorganisms. The antibacterial properties of CuZnO@GO nanocomposites on mixed bacteria were researched in the cooling water system. The results showed that when adding CuZnO@GO nanocomposites to E. coli or S. aureus suspension, the protein leakage after 20 h was 10.5 times or 8.3 times higher than that in the blank experiment. Furthermore, the antibacterial activity of CuZnO@GO nanocomposites in presence of visible light was found to be signi?cantly enhanced as compared with control. Under visible light irradiation, the antibacterial rate of CuZnO@GO nanocomposites in circulating cooling water reached 99.09% when the mass fraction of GO was 17.5%, and more than 90% of bacteria were inactivated by 100 mg L?1 CuZnO@GO nanocomposites in 60 min after four recycled runs.
关键词: Water treatment,CuZnO@GO nanocomposites,Visible light,Photocatalytic antibacterial activity,Antibacterial mechanism
更新于2025-09-10 09:29:36