- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[OSA Optical Fiber Communication Conference - San Francisco, California (2014..-..)] Optical Fiber Communication Conference - Biorthogonal Modulation in 8 Dimensions Experimentally Implemented as 2PPM-PS-QPSK
摘要: The influence of ambient air species especially humidity is an ever-present challenge for atmospheric pressure plasma jet applications. Especially, where the plasma-induced effects are extremely sensitive to humidity, such as in the field of plasma medicine, an understanding of the influence of ambient species diffusion on plasma chemistry and on reactive component composition is crucial. In this paper, we investigate the influence of ambient humidity versus feed gas humidity on the production of reactive components by atmospheric pressure plasma jets. By the use of a shielding gas curtain, we control the surrounding atmosphere around the active effluent region of the investigated argon RF-plasma jet the ambient gas. By quantum cascade laser absorption spectroscopy and by Fourier transformed infrared (IR) absorption spectroscopy, the effect of diffusing surrounding molecular species on the chemistry of the long-living reactive oxygen species is investigated. Mechanisms of H2O2 and O3 production are studied. In this paper, we have quantified the influence that ambient species, namely, water molecules, have on the reactive species’ generation in the gas phase. It is shown that the effect of ambient humidity is important for the long-living species production, feed gas humidity, however, has the much stronger effect. Finally, with the focus of applications in plasma medicine, the cell viability of human skin cells (HaCaT keratinocytes) as a function of feed gas and ambient gas humidity is compared.
关键词: Ambient humidity,plasma medicine,feed gas humidity,atmospheric pressure plasma jet,cell viability,plasma chemistry
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS) - Shenyang, China (2019.7.12-2019.7.14)] 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS) - Infrared and Visible Image Fusion Based on CLAHE and Sparse Representation
摘要: The influence of ambient air species especially humidity is an ever-present challenge for atmospheric pressure plasma jet applications. Especially, where the plasma-induced effects are extremely sensitive to humidity, such as in the field of plasma medicine, an understanding of the influence of ambient species diffusion on plasma chemistry and on reactive component composition is crucial. In this paper, we investigate the influence of ambient humidity versus feed gas humidity on the production of reactive components by atmospheric pressure plasma jets. By the use of a shielding gas curtain, we control the surrounding atmosphere around the active effluent region of the investigated argon RF-plasma jet the ambient gas. By quantum cascade laser absorption spectroscopy and by Fourier transformed infrared (IR) absorption spectroscopy, the effect of diffusing surrounding molecular species on the chemistry of the long-living reactive oxygen species is investigated. Mechanisms of H2O2 and O3 production are studied. In this paper, we have quantified the influence that ambient species, namely, water molecules, have on the reactive species’ generation in the gas phase. It is shown that the effect of ambient humidity is important for the long-living species production, feed gas humidity, however, has the much stronger effect. Finally, with the focus of applications in plasma medicine, the cell viability of human skin cells (HaCaT keratinocytes) as a function of feed gas and ambient gas humidity is compared.
关键词: plasma chemistry,atmospheric pressure plasma jet,feed gas humidity,Ambient humidity,plasma medicine,cell viability
更新于2025-09-23 15:19:57
-
Scanning atmospheric-pressure plasma jet treatment of nickel oxide with peak temperature of a??500 ?°C for fabricating pa??ia??n structure perovskite solar cells
摘要: Scanning atmospheric-pressure plasma jet (APPJ) treatment of nickel oxide with a peak temperature of 500 °C was performed for fabricating p–i–n structure perovskite solar cells (PSCs). APPJ post-treatment leading to enhanced light scattering in PSCs that in turn increases the haze of NiO on FTO glass, improves the cell efficiency. APPJ treatment on NiO also improves the wettability to facilitate the follow-up deposition of CH3NH3PbI3. This also leads to better PSC performance. X-ray photoelectron spectroscopy indicates that APPJ treatment results in fewer C–N bonds and reduced NiAc2 content, suggesting more complete conversion of the liquid precursor into NiO. With three APPJ scans, the average PCE improves from 11.91% to 13.47%, with the best-performing PSC achieving an efficiency of 15.67%.
关键词: X-ray photoelectron spectroscopy,light scattering,Scanning atmospheric-pressure plasma jet,perovskite solar cells,wettability,nickel oxide
更新于2025-09-23 15:19:57
-
Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet
摘要: Electronic devices such as solar cells and thin-film transistors can be fabricated using thin-film deposition. Low-cost, low-temperature and high-speed deposition methods are required to ensure that the production of devices using thin-film deposition is affordable. Herein, we report the development of a low-cost and simple thin-film deposition method using microwave-excited atmospheric pressure plasma jet (MWAPPJ). MWAPPJ produces a low-temperature (several hundred degrees) plasma under atmospheric conditions, does not require expensive vacuum equipment, and it enables high-speed deposition of thin-films. Zinc acetylacetonate sol-gel precursors that were adhered to stainless steel mesh targets were irradiated by MWAPPJ with oxygen, which resulted in zinc oxide (ZnO) nanosheet thin-films with diameters of 100–200 nm on silicon substrates. We used 50-nm-thick ZnO thin-films that were processed using MWAPPJ as the electron collection layer in organic photovoltaic (OPV) cells. This work represents an important contribution to the design and production of low-cost OPV solar cells.
关键词: Thin-films,Electron Collection layer,Nanostructured Zinc Oxide,Organic Photovoltaic Cells.,Microwave-excited Atmospheric Pressure Plasma Jet
更新于2025-09-19 17:15:36
-
[IEEE 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - Sozopol, Bulgaria (2019.9.6-2019.9.8)] 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) - The Stabilization of the Bolometera??s Heat-Exchange Coefficient with the Environment
摘要: The influence of ambient air species especially humidity is an ever-present challenge for atmospheric pressure plasma jet applications. Especially, where the plasma-induced effects are extremely sensitive to humidity, such as in the field of plasma medicine, an understanding of the influence of ambient species diffusion on plasma chemistry and on reactive component composition is crucial. In this paper, we investigate the influence of ambient humidity versus feed gas humidity on the production of reactive components by atmospheric pressure plasma jets. By the use of a shielding gas curtain, we control the surrounding atmosphere around the active effluent region of the investigated argon RF-plasma jet the ambient gas. By quantum cascade laser absorption spectroscopy and by Fourier transformed infrared (IR) absorption spectroscopy, the effect of diffusing surrounding molecular species on the chemistry of the long-living reactive oxygen species is investigated. Mechanisms of H2O2 and O3 production are studied. In this paper, we have quantified the influence that ambient species, namely, water molecules, have on the reactive species’ generation in the gas phase. It is shown that the effect of ambient humidity is important for the long-living species production, feed gas humidity, however, has the much stronger effect. Finally, with the focus of applications in plasma medicine, the cell viability of human skin cells (HaCaT keratinocytes) as a function of feed gas and ambient gas humidity is compared.
关键词: plasma medicine,cell viability,feed gas humidity,plasma chemistry,Ambient humidity,atmospheric pressure plasma jet
更新于2025-09-19 17:13:59
-
Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis
摘要: A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be e?ciently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon pro?le exhibited an anisotropic shape and the etching rate was maximum at the total gas ?ow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 μm/min was obtained at a plasma power of 100 W.
关键词: spectroscopic analysis,atmospheric-pressure plasma jet,silicon etching,di?uoromethane
更新于2025-09-04 15:30:14